首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R.  相似文献   

3.
Classic IL-6 signaling is conditioned by the transmembrane receptor (IL-6R) and homodimerization of gp130. During trans-signaling, IL-6 binds to soluble IL-6R (sIL-6R), enabling activation of cells expressing solely gp130. Soluble gp130 (sgp130) selectively inhibits IL-6 trans-signaling. To characterize amniotic fluid (AF) IL-6 trans-signaling molecules (IL-6, sIL-6R, sgp130) in normal gestations and pregnancies complicated by intra-amniotic inflammation (IAI), we studied 301 women during second trimester (n = 39), third trimester (n = 40), and preterm labor with intact (n = 131, 85 negative IAI and 46 positive IAI) or preterm premature rupture of membranes (PPROM; n = 91, 61 negative IAI and 30 positive IAI). ELISA, Western blotting, and real-time RT-PCR were used to investigate AF, placenta, and amniochorion for protein and mRNA expression of sIL-6R, sgp130, IL-6R, and gp130. Tissues were immunostained for IL-6R, gp130, CD15(+) (polymorphonuclear), and CD3(+) (T cell) inflammatory cells. The ability of sIL-6R and sgp130 to modulate basal and LPS-stimulated release of amniochorion matrix metalloprotease-9 was tested ex vivo. We showed that in physiologic gestations, AF sgp130 decreases toward term. AF IL-6 and sIL-6R were increased in IAI, whereas sgp130 was decreased in PPROM. Our results suggested that fetal membranes are the probable source of AF sIL-6R and sgp130. Immunohistochemistry and RT-PCR revealed increased IL-6R and decreased gp130 expression in amniochorion of women with IAI. Ex vivo, sIL-6R and LPS augmented amniochorion matrix metalloprotease-9 release, whereas sgp130 opposed this effect. We conclude that IL-6 trans-signaling molecules are physiologic constituents of the AF regulated by gestational age and inflammation. PPROM likely involves functional loss of sgp130.  相似文献   

4.
5.
6.
IL-6 is synthesized in human papilloma virus (HPV)-transformed cervical carcinoma cell lines and is supposed to stimulate these cells in an autocrine manner. We studied IL-6 production and responsiveness in nonmalignant HPV-transformed keratinocytes and cervical carcinoma cells in detail. IL-6 was detected in cervical carcinomas in situ. Correspondingly, HPV-positive carcinoma cell lines expressed high IL-6 levels. However, these carcinoma cell lines showed low responsiveness to IL-6 as revealed by low constitutive STAT3 binding activity, which was not further enhanced by exogenous IL-6. In contrast, in vitro-transformed nonmalignant keratinocytes without endogenous IL-6 production strongly responded to exogenous IL-6 with activation of STAT3. STAT3 protein expression levels were comparable in both responsive and nonresponsive cell lines. Also, gp130, the upstream signal-transducing receptor subunit conveying IL-6 signals into the cell, was expressed in all tested cell lines. However, the IL-6 binding subunit gp80 was lost in the malignant cells. Addition of soluble gp80 was sufficient to restore IL-6 responsiveness in carcinoma cells as shown by enhanced activation of STAT3 binding activity. As a consequence of the restored IL-6 responsiveness, carcinoma cells strongly produced the chemokine monocyte chemoattractant protein-1 (MCP-1). Our data demonstrate that cervical carcinoma cells producing high amounts of IL-6 only weakly respond to IL-6 in an autocrine manner due to limited gp80 expression. While production of IL-6 might contribute to a local immunosuppressive effect, silencing an autocrine IL-6 response prevents constitutive production of the mononuclear cell-attracting chemokine MCP-1. Both mechanisms might help the tumor to escape the immune system.  相似文献   

7.
Binding of interleukin-6 (IL-6) to its specific receptor IL-6R is a prerequisite for the activation of the signal-transducing receptor glycoprotein 130 (gp130). A soluble form of the IL-6R (sIL-6R) in complex with IL-6 can activate cells lacking membrane-bound IL-6R (trans-signaling). IL-6-trans-signaling is counterbalanced by a naturally occurring, soluble form of gp130 (sgp130), whereby signaling via the membrane-bound IL-6R is not affected. Many inflammatory and neoplastic disorders are driven by IL-6 trans-signaling. By analysis of the three-dimensional structure of gp130 in complex with IL-6 and sIL-6R, we identified amino acid side chains in gp130 as candidates for the generation of sgp130 muteins with increased binding affinity to IL-6/sIL-6R. In addition, with information from modeling and NMR analysis of the membrane proximal domain of gp130, we generated a more stable variant of sgp130Fc. Proteins were tested for binding to the IL-6/sIL-6R-complex, for inhibition of IL-6/sIL-6R-induced cell proliferation and of acute phase gene expression. Several mutations showed an additive effect in improving the binding affinity of human sgp130 toward human IL-6/sIL-6R. Finally, we demonstrate the species specificity of these mutations in the optimal triple mutein (T102Y/Q113F/N114L) both in vitro and in a mouse model of acute inflammation.  相似文献   

8.
Analysis of the IL-6 Receptor beta chain (gp130) mRNA expression on the two human epithelial cell lines UAC and Hep3B reveals that it is enhanced by IL-6, IL-1 and TNF treatment. In the case of UAC cells, TNF action might be mediated by IL-6. For Hep3B cells, TNF seems to exert a direct effect on gp130, as no IL-6 expression is detected after stimulation by this cytokine. On the same cells, increase of the binding of an anti-gp130 monoclonal antibody was observed after treatment by TNF, which denotes the effective appearance of new gp130 molecules on the cell surface. All this cytokines seem to act selectively on the beta chain of the IL-6 receptor. This probably reflects the importance for some cells to have gp130 represented on their membrane in inflammatory contexts.  相似文献   

9.
Interleukin (IL)-6, the founding member of IL-6 family cytokines, plays non-redundant roles in hematopoiesis and acute phase responses. IL-6 signals via a specific private IL-6Rα and a common beta chain gp130. In this study, we have cloned both the IL-6Rα and gp130 in rainbow trout. The trout gp130 cDNA encodes 906 aa and is similar in size, extracellular domain structure (D1–D6) and presence of intracellular motifs important for signal transduction to tetrapod gp130s. The trout IL-6Rα cDNA encodes for 834 aa and is larger compared to tetrapod IL-6Rαs, as are other fish IL-6Rα molecules due to a large D1 domain. However, the cytokine-binding domain is well conserved across vertebrates, with four conserved cysteine residues in the N-terminal FNIII domain and a WSXWS motif in the C-terminal FNIII domain. Furthermore, a phylogenetic tree analysis confirmed that the reported fish IL-6Rα and gp130 molecules are orthologues to their tetrapod counterparts. The extra large D1 domain of the salmonid IL-6Rα molecules results partially from the insertions of two repetitive sequences of [TS]-[TF]-VSTTT-[ND]-TTSNG and TTVS-[AT]-IKD-[DG]-S-[KD]-N-[GR], respectively. Furthermore the numbers of repetitions of the two motifs were variable in different individuals and cell lines, and even in the same fish allelic polymorphism exists. Trout IL-6Rα was expressed at higher levels than gp130 in a number of tissues examined and the expression of both IL-6Rα and gp130 could be modulated by LPS and Poly I:C in the cell lines studied. The expression patterns of the receptors suggest that high level expression of IL-6Rα is critical for IL-6 responsiveness.  相似文献   

10.
11.
12.
Normal platelets possess the soluble form of IL-6 receptor   总被引:2,自引:0,他引:2  
Interleukin 6 is a multifunctional cytokine that exerts its biological activity through binding to an 80 Kd specific receptor (IL-6Ralpha) and a 130 Kd signal-transducing unit (gp130). A 55 Kd soluble IL-6R (IL-6sR) has also been described which, after binding to IL-6 is also able to activate gp130. The presence of IL-6Ralpha was described in some megakaryoblastic cell lines but is still controversial in normal megakaryocytes. In this study we demonstrate the presence of intraplatelet IL-6sR by Western blot through the appearance of a 55 Kd protein and the finding of detectable amounts of IL-6sR in the platelet content by ELISA technique. Besides, we showed IL-6sR release during platelet activation induced by thrombin and a complex of ADP and epinephrine. IL-6Ralpha on platelet membrane could not be found neither by Western blot nor by flow cytometry. The IL-6sR released during platelet activation and complexed to IL-6 could act on cell types such as endothelial cells that do not possess IL-6Ralpha through binding to gp130.Besides, since we could not find IL-6R on platelet membrane, the potentiating effect of IL-6 on platelet function could be explained through binding of IL-6sR/IL-6 complex to platelet membrane gp130.  相似文献   

13.
This study describes a novel path to the activation of smooth muscle cells (SMC) by the IL-6/soluble IL-6 receptor (sIL-6R) system. Human vascular SMC constitutively express only scant amounts of IL-6R and so do not respond to stimulation with this cytokine. We show that SMC also do not constitutively express appreciable levels of gp130, which would render them sensitive to transsignaling by the IL-6/sIL-6R complex. Because gp130 is generally believed not to be subject to regulation, SMC would thus appear not to qualify as targets for the IL-6/sIL-6R system. However, we report that treatment of SMC with IL-6/sIL-6R provokes marked up-regulation of gp130 mRNA and surface protein expression. This is accompanied by secretion of IL-6 by the cells, so that an autocrine stimulation loop is created. In the wake of this self-sustaining system, there is a selective induction and secretion of MCP-1, up-regulation of ICAM-1, and marked cell proliferation. The study identifies SMC as the first example of cells in which gp130 expression is subject to substantive up-regulation, and discovers a novel amplification loop involving IL-6 and its soluble receptor that drives SMC into a proinflammatory state.  相似文献   

14.
15.
Cytokines of the interleukin-6 (IL-6)-type family all bind to the glycoprotein gp130 on the cell surface and require interaction with two gp130 or one gp130 and another related signal transducing receptor subunit. In addition, some cytokines of this family, such as IL-6, interleukin-11, ciliary neurotrophic factor, neuropoietin, cardiotrophin-1, and cardiotrophin-1-like-cytokine, interact with specific ligand binding receptor proteins. High- and low-affinity binding sites have been determined for these cytokines. So far, however, the stoichiometry of the signaling receptor complexes has remained unclear, because the formation of the cytokine/cytokine-receptor complexes has been analyzed with soluble receptor components in solution, which do not necessarily reflect the situation on the cellular membrane. Consequently, the binding affinities measured in solution have been orders of magnitude below the values obtained with whole cells. We have expressed two gp130 extracellular domains in the context of a Fc-fusion protein, which fixes the receptors within one dimension and thereby restricts the flexibility of the proteins in a fashion similar to that within the plasma membrane. We measured binding of IL-6 and interleukin-b receptor (IL-6R) by means of fluorescence-correlation spectroscopy. For the first time we have succeeded in recapitulating in a cell-free condition the binding affinities and dynamics of IL-6 and IL-6R to the gp130 receptor proteins, which have been determined on whole cells. Our results demonstrate that a dimer of gp130 first binds one IL-6/IL-6R complex and only at higher ligand concentrations does it bind a second IL-6/IL-6R complex. This view contrasts with the current perception of IL-6 receptor activation and reveals an alternative receptor activation mechanism.  相似文献   

16.
Interleukin-6 (IL-6) plays an important role in immune responses and signals via two different pathways. When IL-6 binds to its non-signalling membrane-bound receptor (IL-6R), a non-covalent dimer of the ubiquitous interleukin-6 signal transducer gp130 is recruited to initiate intracellular signalling cascades. This so-called classical signalling pathway is restricted to cells expressing the membrane-bound IL-6R, such as hepatocytes and certain leukocytes. In addition, an alternative trans-signalling pathway uses soluble forms of IL-6R (sIL-6R) in complex with IL-6 to activate cells expressing gp130, but not membrane-bound IL-6R. In both cases, a tetrameric or hexameric signalling complex consisting of two gp130 molecules and one or two molecules each of IL-6 and (s)IL-6R is formed. The structure of the hexameric complex of the ligand-binding domains of gp130 (D1-D3) with IL-6 and sIL-6R has been solved by X-ray crystallography as well as the full-length extracellular part of gp130 (D1-D6) as a monomer. Since gp130 exists as a preformed dimer on the cell surface, we used a sgp130Fc fusion protein - consisting of two extracellular gp130 regions (D1-D6) dimerised by an IgG1-Fc part - to study the structure of unliganded gp130 extracellular domains in solution by small-angle X-ray scattering (SAXS). The SAXS data indicated that sgp130Fc forms a rigid molecule in solution. The low resolution structural model reveals an elongated assembly with an Fc base and two gp130 arms, whereby the orientation of the ligand-binding domains D1-D3 with respect to the membrane-proximal domains D4-D6 differs from that in the crystallographic monomer. Functional implications of these findings are discussed.  相似文献   

17.
The biological actions of interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and ciliary neurotrophic factor (CNTF) are mediated via respective functional receptor complexes consisting of a common signal-transducing component, gp130, and other specific receptor components, IL-6 receptor alpha (IL-6R), LIF receptor beta (LIFR), and CNTF receptor alpha (CNTFR). IL-6, LIF, and CNTF are implicated in skeletal muscle regeneration. However, the cell populations that express these receptor components in regenerating muscles are unknown. Using in situ hybridization histochemistry, we examined spatiotemporal expression patterns of gp130, IL-6R, LIFR, and CNTFR mRNAs in regenerating muscles after muscle contusion. At the early stages of regeneration (from 3 hr to Day 2 post contusion), significant signals for gp130 and LIFR mRNAs were detected in myonuclei and/or nuclei of muscle precursor cells (mpcs) and in mononuclear cells located in extracellular spaces between myofibers after muscle contusion, but IL-6R mRNA was expressed only in mononuclear cells. At Day 7 post contusion, signals for gp130, LIFR, and IL-6R mRNAs were not detected in newly formed myotubes, whereas the CNTFR mRNA level was upregulated in myotubes. These findings suggest that the upregulation of receptor subunits in distinct cell populations plays an important role in the effective regeneration of both myofibers and motor neurons. (J Histochem Cytochem 48:1203-1213, 2000)  相似文献   

18.
19.
Regulation of the expression of IL-6 in human monocytes   总被引:15,自引:0,他引:15  
IL-6 is a cellular regulatory molecule with various cell-dependent functions. We have studied the control of IL-6 expression in human monocytes because they play a key role in the production of this molecule. The effects of adherence and different cytokines including CSF-1, IFN-gamma, IL-1 alpha, and granulocyte-macrophage-CSF were tested on IL-6 expression. IL-6 mRNA was usually not detected in the starting population of PBMC. Adherence induced IL-6 gene expression in monocytes in less than 2 h and subsequently IL-6 secretion. Priming of monocytes by adherence was more efficient for IL-6 overinduction by CSF-1. In contrast, high level induction of IL-6 by IFN-gamma in unfractionated PBMC did not require adherence and in situ hybridization revealed that IL-6 mRNA was present in monocytes but not in lymphocytes. A similar phenomenon was observed for IL-1 alpha and granulocyte-macrophage-CSF. Two cell lines, HL-60 and U937, in which monocytic differentiation occurs after induction by PMA, were subsequently investigated. IL-6 was not constitutively detectable in these two cell lines, whereas PMA treatment induced IL-6 expression. This effect was rapid (30 min) and transitory in HL-60, whereas IL-6 mRNA was still detected after 72 h of induction in U937. Addition of human rIL-6 on U937 and HL-60 cells inhibited their proliferation and enhanced expression of HLA class I Ag.  相似文献   

20.
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号