首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using in silico methods for screening the human genome for new caspase recruitment domain (CARD) proteins, we have identified INCA (Inhibitory CARD) as a protein that shares 81% identity with the prodomain of caspase-1. The INCA gene is located on chromosome 11q22 between the genes of COP/Pseudo-ICE and ICEBERG, two other CARD proteins that arose from caspase-1 gene duplications. We show that INCA mRNA is expressed in many tissues. INCA is specifically upregulated by interferon-gamma in the monocytic cell lines THP-1 and U937. INCA physically interacts with procaspase-1 and blocks the release of mature IL-1beta from LPS-stimulated macrophages. Unlike COP/Pseudo-ICE and procaspase-1, INCA does not interact with RIP2 and does not induce NF-kappaB activation. Our data show that INCA is a novel intracellular regulator of procaspase-1 activation, involved in the regulation of pro-IL-1beta processing and its release during inflammation.  相似文献   

2.
3.
The production of bio-active interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves binding of the caspase-1 prodomain to a caspase recruitment domain (CARD)-containing serine/threonine kinase known as RIP2/CARDIAK/RICK. We have identified a novel protein, COP (CARD only protein), which has a high degree of sequence identity to the caspase-1 prodomain. COP binds to both RIP2 and the caspase-1 prodomain and inhibits RIP2-induced caspase-1 oligomerization. COP inhibits caspase- 1-induced IL-1beta secretion as well as lipopolysaccharide-induced IL-1beta secretion in transfected cells. Our data indicate that COP can regulate IL-1beta secretion, implying that COP may play a role in down-regulating inflammatory responses analogous to the CARD protein ICEBERG.  相似文献   

4.
The proteolytic activity of caspases is involved in apoptosis and inflammation. In this regard, caspase-1 is required for pro-interleukin (IL)-1beta and pro-IL-18 maturation. We report here on a novel function of caspase-1 as an activator of nuclear factor of the kappa-enhancer in B-cells (NF-kappaB) and p38 mitogen-activated protein kinase (MAPK). This function is not shared by the murine caspase-1 homologues caspase-11 and -12. In contrast to pro-IL-1beta maturation, caspase-1-induced NF-kappaB activation is not inhibited by the virus-derived caspase-1 inhibitor cytokine response modifier A and is equally induced by the enzymatically inactive caspase-1 C285A mutant. Although the general NF-kappaB-inhibiting protein A20 inhibits caspase-1-derived activation of NF-kappaB, dominant-negative forms of TRAF2 and RIP1 have no effect. We demonstrate that caspase-1 interacts with RIP2 and that dominant-negative forms of RIP2 and IkappaB kinase complex-beta inhibit caspase-1-mediated NF-kappaB activation. Structure-function analysis shows that the caspase recruitment domain of caspase-1 mediates the activation of NF-kappaB and p38 MAPK. These data demonstrate that caspase-1 contributes to inflammation by two distinct pathways: proteolysis of pro-IL-1beta, and RIP2-dependent activation of NF-kappaB and p38 MAPK mediated by the caspase recruitment domain.  相似文献   

5.
ICEBERG: a novel inhibitor of interleukin-1beta generation   总被引:8,自引:0,他引:8  
ProIL-1beta is a proinflammatory cytokine that is proteolytically processed to its active form by caspase-1. Upon receipt of a proinflammatory stimulus, an upstream adaptor, RIP2, binds and oligomerizes caspase-1 zymogen, promoting its autoactivation. ICEBERG is a novel protein that inhibits generation of IL-1beta by interacting with caspase-1 and preventing its association with RIP2. ICEBERG is induced by proinflammatory stimuli, suggesting that it may be part of a negative feedback loop. Consistent with this, enforced retroviral expression of ICEBERG inhibits lipopolysaccharide-induced IL-1beta generation. The structure of ICEBERG reveals it to be a member of the death-domain-fold superfamily. The distribution of surface charge is complementary to the homologous prodomain of caspase-1, suggesting that charge-charge interactions mediate binding of ICEBERG to the prodomain of caspase-1.  相似文献   

6.
Caspase-1, the IL-1beta converting enzyme (ICE), is required for intracellular processing/maturation of IL-1beta and IL-18. NO releasing nonsteroidal antiinflammatory drugs (NSAIDs) are a new class of NSAID derivatives that spare the gastric mucosa. Here, we tested the hypothesis that NCX-4016, a NO-aspirin derivative, inhibits proinflammatory cytokine release from endotoxin (LPS)-challenged monocytes. Our results demonstrated that exposing LPS-stimulated human monocytes to NCX-4016 resulted in a 40-80% inhibition of IL-1beta, IL-8, IL-12, IL-18, IFN-gamma, and TNF-alpha release with an EC(50) of 10-20 microM for IL-1beta and IL-18. Incubating LPS-primed monocytes with NCX-4016 resulted in intracellular NO formation as assessed by measuring nitrite/nitrate, intracellular cGMP concentration, and intracellular NO formation. Exposing LPS-stimulated monocytes to aspirin or celecoxib caused a 90% inhibition of prostaglandin E(2) generation but had no effect on cytokine release. NCX-4016, similar to the NO donor S-nitroso-N-acetyl-D-L-penicillamine, inhibited caspase-1 activity with an EC(50) of approximately 20 microM. The inhibition of caspase-1 by NCX-4016 was reversible by the addition of DTT, which is consistent with S-nitrosylation as the mechanism of caspase-1 inhibition. NCX-4016, but not aspirin, prevented ICE activation as measured by assessing the release of ICE p20 subunit. IL-18 immunoneutralization resulted in a 60-80% reduction of IL-1beta, IL-8, IFN-gamma, and TNF-alpha release from LPS-stimulated monocytes. Taken together, these data indicate that incubating human monocytes with NCX-4016 causes intracellular NO formation and suppresses IL-1beta and IL-18 processing by inhibiting caspase-1 activity. Caspase-1 inhibition is a new, cycloxygenase-independent antiinflammatory mechanism of NO-aspirin.  相似文献   

7.
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is an adaptor molecule that has recently been implicated in the activation of caspase-1. We have studied the role of ASC in the host defense against the intracellular pathogen Listeria monocytogenes. ASC was found to be essential for the secretion of IL-1beta/IL-18, but dispensable for IL-6, TNF-alpha, and IFN-beta production, in macrophages infected with Listeria. Activation of caspase-1 was abolished in ASC-deficient macrophages, whereas activation of NF-kappaB and p38 was unaffected. In contrast, secretion of IL-1beta, IL-6, and TNF-alpha was reduced in TLR2-deficient macrophages infected with Listeria; this was associated with impaired activation of NF-kappaB and p38, but normal caspase-1 processing. Analysis of Listeria mutants revealed that cytosolic invasion was required for ASC-dependent IL-1beta secretion, consistent with a critical role for cytosolic signaling in the activation of caspase-1. Secretion of IL-1beta in response to lipopeptide, a TLR2 agonist, was greatly reduced in ASC-null macrophages and was abolished in TLR2-deficient macrophages. These results demonstrate that TLR2 and ASC regulate the secretion of IL-1beta via distinct mechanisms in response to Listeria. ASC, but not TLR2, is required for caspase-1 activation independent of NF-kappaB in Listeria-infected macrophages.  相似文献   

8.
Caspase recruitment domain (CARD)-only proteins (COPs), regulate apoptosis, inflammation, and innate immunity. They inhibit the assembly of NOD-like receptor complexes such as the inflammasome and NODosome, which are molecular complexes critical for caspase-1 activation. COPs are known to interact with either caspase-1 CARD or RIP2 CARD via a CARD-CARD interaction, and inhibit caspase-1 activation or further downstream signaling. In addition to the human COPs, Pseudo-ICE, INCA, and ICEBERG, several viruses also contain viral COPs that help them escape the host immune system. To elucidate the molecular mechanism of host immunity inhibition by viral COPs, we solved the structure of a viral COP for the first time. Our structure showed that viral COP forms a structural transformation-mediated dimer, which is unique and has not been reported in any structural study of a CARD domain. Based on the current structure, and the previously solved structures of other death domain superfamily members, we propose that structural transformation-mediated dimerization might be a new strategy for dimer assembly in the death domain superfamily.  相似文献   

9.
Helicobacter pylori is a Gram-negative microaerophilic bacterium that causes chronic gastritis, peptic ulcer, and gastric carcinoma. Interleukin-1beta (IL-1beta) is one of the potent proinflammatory cytokines elicited by H. pylori infection. We have evaluated the role of H. pylori lipopolysaccharide (LPS) as one of the mediators of IL-1beta release and dissected the signaling pathways leading to LPS-induced IL-1beta secretion. We demonstrate that both the NF-kappaB and the C/EBPbeta-binding elements of the IL-1beta promoter drive LPS-induced IL-1beta gene expression. NF-kappaB activation requires the classical TLR4-initiated signaling cascade leading to IkappaB phosphorylation as well as PI-3K/Rac1/p21-activated kinase (PAK) 1 signaling, whereas C/EBPbeta activation requires PI-3K/Akt/p38 mitogen-activated protein (MAP) kinase signaling. We observed a direct interaction between activated p38 MAP kinase and C/EBPbeta, suggesting that p38 MAPK is the immediate upstream kinase responsible for activating C/EBPbeta. Most important, we observed a role of Rac1/PAK1 signaling in activation of caspase-1, which is necessary for maturation of pro-IL-1beta. H. pylori LPS induced direct interaction between PAK1 and caspase-1, which was inhibited in cells transfected with dominant-negative Rac1. PAK1 immunoprecipitated from lysates of H. pylori LPS-challenged cells was able to phosphorylate recombinant caspase-1, but not its S376A mutant. LPS-induced caspase-1 activation was abrogated in cells transfected with caspase-1(S376A). Taken together, these results suggested a role of PAK1-induced phosphorylation of caspase-1 at Ser376 in activation of caspase-1. To the best of our knowledge our studies show for the first time that LPS-induced Rac1/PAK1 signaling leading to caspase-1 phosphorylation is crucial for caspase-1 activation. These studies also provide detailed insight into the regulation of IL-1beta gene expression by H. pylori LPS and are particularly important in the light of the observations that IL-1beta gene polymorphisms are associated with increased risk of H. pylori-associated gastric cancer.  相似文献   

10.
NAIP CIIA HET-E and TP1 (NACHT) family proteins are involved in sensing intracellular pathogens or pathogen-derived molecules, triggering host defense responses resulting in caspase-mediated processing of proinflammatory cytokines and NF-kappaB activation. Caspase-associated recruitment domain, leucine-rich repeat, and NACHT-containing protein (CLAN), also known as ICE protease-activating factor, belongs to a branch of the NACHT family that contains proteins carrying caspase-associated recruitment domains (CARDs) and leucine-rich repeats (LRRs). By using gene transfer and RNA-interference approaches, we demonstrate in this study that CLAN modulates endogenous caspase-1 activation and subsequent IL-1beta secretion from human macrophages after exposure to LPS, peptidoglycan, and pathogenic bacteria. CLAN was also found to mediate a direct antibacterial effect within macrophages after Salmonella infection and to sensitize host cells to Salmonella-induced cell death through a caspase-1-independent mechanism. These results indicate that CLAN contributes to several biological processes central to host defense, suggesting a prominent role for this NACHT family member in innate immunity.  相似文献   

11.
The production of bioactive interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves interaction between the caspase recruit domains (CARDs) of caspase-1 and a serine/threonine kinase RIP2. While the association of Nod1 with both caspase-1 and RIP2 is already known, the consequences of these interactions are poorly understood. Because Nod1 also binds to RIP2, we hypothesized that Nod1 plays a role in pro-caspase-1 activation and IL-1beta processing. We show here that Nod1 binds to both RIP2 and caspase-1 by CARD interactions. Nod1 enhances pro-caspase-1 oligomerization and pro-caspase-1 processing. Nod1 enhances caspase-1-induced IL-1beta secretion, as well as lipopolysaccharide (LPS)-induced IL-1beta secretion in transfected cells. Moreover, HT1080 cells stably transfected with Nod1 showed higher LPS-induced IL-1beta secretion than non-transfected cells, suggesting a role of Nod1 in LPS-induced responses. Our data indicate that Nod1 can regulate IL-1beta secretion, implying that Nod1 may play a role in inflammatory responses to bacterial LPS.  相似文献   

12.
Muramyl dipeptide (MDP), the microbial activator of nucleotide-binding oligomerization domain 2 (Nod2), induces NF-kappaB and MAPK activation, leading to the production of multiple anti-bacterial and proinflammatory molecules. In addition, MDP has been implicated in IL-1beta secretion through the regulation of caspase-1. However, the mechanisms that mediate caspase-1 activation and IL-1beta secretion in response to MDP stimulation remain poorly understood. We show here that fluorescent MDP molecules are internalized in primary macrophages and accumulate in granular structures that colocalize with markers of acidified endosomal compartments. The uptake of MDP was Nod2-independent. Upon ATP stimulation, labeled MDP was rapidly released from acidified vesicles into the cytosol, a process that required functional pannexin-1. Caspase-1 activation induced by MDP and ATP required pannexin-1 and Cryopyrin but was independent of Nod2. Conversely, induction of pro-IL-1beta mRNA by MDP stimulation was abolished in Nod2-deficient macrophages but unimpaired in macrophages lacking Cryopyrin. These studies demonstrate a Nod2-independent mechanism mediated through pore-forming pannexin-1 that is required for intracellular delivery of MDP to the cytosol and caspase-1 activation. Furthermore, the work provides evidence for distinct roles of Nod2 and Cryopyrin in the regulation of MDP-induced caspase-1 activation and IL-1beta secretion.  相似文献   

13.
14.
Familial cold autoinflammatory syndrome (FCAS) and the related autoinflammatory disorders, Muckle-Wells syndrome and neonatal onset multisystem inflammatory disease, are characterized by mutations in the CIAS1 gene that encodes cryopyrin, an adaptor protein involved in activation of IL-converting enzyme/caspase-1. Mutations in cryopyrin are hypothesized to result in abnormal secretion of caspase-1-dependent proinflammatory cytokines, IL-1beta and IL-18. In this study, we examined cytokine secretion in PBMCs from FCAS patients and found a marked hyperresponsiveness of both IL-1beta and IL-18 secretion to LPS stimulation, but no evidence of increased basal secretion of these cytokines, or alterations in basal or stimulated pro-IL-1beta levels. VX-765, an orally active IL-converting enzyme/caspase-1 inhibitor, blocked IL-1beta secretion with equal potency in LPS-stimulated cells from FCAS and control subjects. These results further link mutations in cryopyrin with abnormal caspase-1 activation, and support the clinical testing of caspase-1 inhibitors such as VX-765 in autoinflammatory disorders.  相似文献   

15.
Genes encoding proteins with PYRIN/PAAD/DAPIN domains, a nucleotide binding fold (NACHT), and leucine rich repeats have recently been recognized as important mediators in autoimmune inflammatory disorders. Here we characterize the expression and function of a member of the PYRIN and NACHT domain (PAN) family, PAN1 (also known as NALP2 and PYPAF2). PAN1 protein expression is regulated by lipopolysaccharide (LPS) and interferons (IFNbeta and IFNgamma) in THP-1 macrophage cells. In gene transfection studies PAN1 manifests an inhibitory influence on NF-kappaB activation induced by various pro-inflammatory stimuli, including tumor necrosis factor TNFalpha and interleukin-1beta (IL-1beta). Gene transfer-mediated elevations in PAN1 protein also suppressed activation of IkappaB kinases induced by inflammatory cytokines. Conversely, reducing endogenous levels of PAN1 using small interfering RNA enhanced LPS-induced production of ICAM-1 (intercellular adhesion molecule 1), an NF-kappaB-dependent gene. We also show here that PAN1 binds via its PYRIN domain to ASC, an adapter protein involved in caspase-1 activation. This binding is disrupted by mutation of the alpha1 helix of ASC. In gene transfer experiments PAN1 enhances caspase-1 activation and IL-1beta secretion in collaboration with ASC. Conversely, reducing endogenous levels of PAN1 using small interfering RNA significantly reduced LPS-induced secretion of IL-1beta in monocytes. We propose that PAN1 functions as a modulator of the activation of NF-kappaB and pro-caspase-1 in macrophages.  相似文献   

16.
Proteinase inhibitor 9 (PI-9) inhibits caspase-1 (interleukin (IL)-1beta-converting enzyme) and granzyme B, thereby regulating production of the pro-inflammatory cytokine IL-1beta and susceptibility to granzyme B-induced apoptosis. We show that cellular PI-9 mRNA and protein are induced by IL-1beta, lipopolysaccharide, and 12-O-tetradecanoylphorbol-13-acetate. We identified functional imperfect nuclear factor-kappaB (NF-kappaB) sites at -135 and -88 and a consensus activator protein-1 (AP-1) site at -308 in the PI-9 promoter region. Using transient transfections in HepG2 cells to assay PI-9 promoter mutations, we find that mutational ablation of the AP-1 site or of either NF-kappaB site reduces IL-1beta-induced expression of PI-9 by approximately 60%. Mutational ablation of the two NF-kappaB sites and of the AP-1 site nearly abolishes both basal and IL-1beta-induced expression of PI-9. Nuclear extracts from IL-1beta-treated HepG2 cells exhibited strong, IL-1beta-inducible binding to the NF-kappaB sites and to the AP-1 site. Electrophoretic mobility shift assays show that after IL-1beta treatment c-Jun/c-Fos and JunD bind to the AP-1 site, whereas the p50/p65 heterodimer binds to the two NF-kappaB sites. Estrogens induce PI-9, but induction of PI-9 by estrogens and IL-1beta is not synergistic. In transiently transfected, estrogen receptor-positive HepG2ER7 cells, estrogens do not interfere with IL-1beta induction, whereas IL-1beta exhibits dose-dependent repression of estrogen-inducible PI-9 expression. Our surprising finding that the pro-inflammatory cytokine IL-1beta strongly induces PI-9 suggests a novel mechanism for regulating inflammation and apoptosis through a negative feedback loop controlling expression of the anti-inflammatory and anti-apoptotic protein, PI-9.  相似文献   

17.
Interleukin (IL)-1beta and IL-18 are structurally similar proteins that require caspase-1 processing for activation. Both proteins are released from the cytosol by unknown pathway(s). To better characterize the release pathway(s) for IL-1beta and IL-18 we evaluated the role of lipopolysaccharide priming, of interleukin-1beta-converting enzyme (ICE) inhibition, of human purinergic receptor (P2X(7)) function, and of signaling pathways in human monocytes induced by ATP. Monocytes rapidly processed and released both IL-1beta and IL-18 after exogenous ATP. Despite its constitutive cytosolic presence, IL-18 required lipopolysaccharide priming for the ATP-induced release. Neither IL-1beta nor IL-18 release was prevented by ICE inhibition, and IL-18 release was not induced by ICE activation itself. Release of both cytokines was blocked completely by a P2X7 receptor antagonist, oxidized ATP, and partially by an antibody to P2X(7) receptor. In evaluating the signaling components involved in the ATP effect, we identified that the protein-tyrosine kinase inhibitor, AG126, produced a profound inhibition of both ICE activation as well as release of IL-1beta/IL-18. Taken together, these results suggest that, although synthesis of IL-1beta and IL-18 differ, ATP-mediated release of both cytokines requires a priming step but not proteolytically functional caspase-1.  相似文献   

18.
19.
IKKbeta-dependent NF-kappaB activation plays a key role in innate immunity and inflammation, and inhibition of IKKbeta has been considered as a likely anti-inflammatory therapy. Surprisingly, however, mice with a targeted IKKbeta deletion in myeloid cells are more susceptible to endotoxin-induced shock than control mice. Increased endotoxin susceptibility is associated with elevated plasma IL-1beta as a result of increased pro-IL-1beta processing, which was also seen upon bacterial infection. In macrophages enhanced pro-IL-1beta processing depends on caspase-1, whose activation is inhibited by NF-kappaB-dependent gene products. In neutrophils, however, IL-1beta secretion is caspase-1 independent and depends on serine proteases, whose activity is also inhibited by NF-kappaB gene products. Prolonged pharmacologic inhibition of IKKbeta also augments IL-1beta secretion upon endotoxin challenge. These results unravel an unanticipated role for IKKbeta-dependent NF-kappaB signaling in the negative control of IL-1beta production and highlight potential complications of long-term IKKbeta inhibition.  相似文献   

20.
Activation of NF-kappaB by FADD, Casper, and caspase-8   总被引:14,自引:0,他引:14  
Fas-associated death domain protein (FADD), caspase-8-related protein (Casper), and caspase-8 are components of the tumor necrosis factor receptor type 1 (TNF-R1) and Fas signaling complexes that are involved in TNF-R1- and Fas-induced apoptosis. Here we show that overexpression of FADD and Casper potently activates NF-kappaB. In the presence of caspase inhibitors, overexpression of caspase-8 also activates NF-kappaB. A caspase-inactive point mutant, caspase-8(C360S), activates NF-kappaB as potently as wild-type caspase-8, suggesting that caspase-8-induced apoptosis and NF-kappaB activation are uncoupled. NF-kappaB activation by FADD and Casper is inhibited by the caspase-specific inhibitors crmA and BD-fmk, suggesting that FADD- and Casper-induced NF-kappaB activation is mediated by caspase-8. FADD, Casper, and caspase-8-induced NF-kappaB activation are inhibited by dominant negative mutants of TRAF2, NIK, IkappaB kinase alpha, and IkappaB kinase beta. A dominant negative mutant of RIP inhibits FADD- and caspase-8-induced but not Casper-induced NF-kappaB activation. A mutant of Casper and the caspase-specific inhibitors crmA and BD-fmk partially inhibit TNF-R1-, TRADD, and TNF-induced NF-kappaB activation, suggesting that FADD, Casper, and caspase-8 function downstream of TRADD and contribute to TNF-R1-induced NF-kappaB activation. Moreover, activation of caspase-8 results in proteolytic processing of NIK, which is inhibited by crmA. When overexpressed, the processed fragments of NIK do not activate NF-kappaB, and the processed C-terminal fragment inhibits TNF-R1-induced NF-kappaB activation. These data indicate that FADD, Casper, and pro-caspase-8 are parts of the TNF-R1-induced NF-kappaB activation pathways, whereas activated caspase-8 can negatively regulate TNF-R1-induced NF-kappaB activation by proteolytically inactivating NIK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号