首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin, ppR) is responsible for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all- trans to 13- cis initiates conformational changes in the protein, leading to activation of the cognate transducer protein (HtrII). We previously observed enhancement of the C 14-D stretching vibration of the retinal chromophore at 2244 cm (-1) upon formation of the K state and interpreted that a steric constraint occurs at the C 14D group in SRII K. Here, we identify the counterpart of the C 14D group as Thr204, because the C 14-D stretching signal disappeared in T204A, T204S, and T204C mutants as well as a C 14-HOOP (hydrogen out-of-plane) vibration at 864 cm (-1). Although the K state of the wild-type bacteriorhodopsin (BR), a light-driven proton pump, possesses neither 2244 nor 864 cm (-1) bands, both signals appeared for the K state of a triple mutant of BR that functions as a light sensor (P200T/V210Y/A215T). We found a positive correlation between these vibrational amplitudes of the C 14 atom at 77 K and the physiological phototaxis response. These observations strongly suggest that the steric constraint between the C 14 group of retinal and Thr204 of the protein is a prerequisite for light-signal transduction by SRII.  相似文献   

2.
Furutani Y  Sudo Y  Wada A  Ito M  Shimono K  Kamo N  Kandori H 《Biochemistry》2006,45(39):11836-11843
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all-trans to 13-cis initiates conformational changes of the protein leading to activation of the cognate transducer protein (pHtrII). Elucidation of the initial photoreaction, formation of the K intermediate of ppR, is important for understanding the mechanism of storage of photon energy. We have reported the K minus ppR Fourier transform infrared (FTIR) spectra, including several vibrational bands of the retinal, the protein, and internal water molecules. It is interesting that more vibrational bands were observed in the hydrogen-out-of-plane (HOOP) region than for the light-driven proton pump, bacteriorhodopsin. This result implied that the steric constraints on the retinal chromophore in the binding pocket of ppR are distributed more widely upon formation of the initial intermediate. In this study, we assigned the HOOP and hydrogen-in-plane vibrations by means of low-temperature FTIR spectroscopy applied to ppR reconstituted with retinal deuterated at C7, C8, C10-C12, C14, and C15. As a result, the 966 (+)/971 (-) and 958 (+)/961 (-) cm(-1) bands were assigned to the C7=C8 and C11=C12 Au HOOP modes, respectively, suggesting that the structural changes spread to the middle part of the retinal. The positive bands at 1001, 994, 987, and 979 cm(-1) were assigned to the C15-HOOP vibrations of the K intermediate, whose frequencies are similar to those of the K(L) intermediate of bacteriorhodopsin trapped at 135 K. Another positive band at 864 cm(-1) was assigned to the C14-HOOP vibration. Relatively many positive bands of hydrogen-in-plane vibrations supported the wide distribution of structural changes of the retinal as well. These results imply that the light energy was stored mainly in the distortions around the Schiff base region while some part of the energy was transferred to the distal part of the retinal.  相似文献   

3.
Furutani Y  Iwamoto M  Shimono K  Wada A  Ito M  Kamo N  Kandori H 《Biochemistry》2004,43(18):5204-5212
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the retinal chromophore is thermally isomerized from the 13-cis to all-trans form. We employed FTIR spectroscopy of ppR at 260 K and pH 5 to reveal that this isomerization occurs upon formation of the O intermediate (ppR(O)) by using ppR samples reconstituted with 12,14-D(2)-labeled retinal. In ppR(O), C=O stretching vibrations of protonated carboxylates newly appear at 1757 (+)/1722 (-) cm(-1) in H(2)O and at 1747 (+)/1718 (-) cm(-1) in D(2)O in addition to the 1765 (+) cm(-1) band of Asp75. Amide I vibrations are basically similar between ppR(M) and ppR(O), whereas unique bands of ppR(O) are also observed such as the negative 1656 cm(-1) band in D(2)O and intense bands at 1686 (-)/1674 (+) cm(-1). In addition, O-D stretching vibrations of water molecules in the entire mid-infrared region are assigned for ppR(M) and ppR(O), the latter being unique for ppR, since it can be detected at low temperature (260 K). The ppR(M) minus ppR difference spectra lack the lowest frequency water band (2215 cm(-1)) observed in the ppR(K) minus ppR spectra, which is probably associated with water that interacts with the negative charges in the Schiff base region. It is likely that the proton transfer from the Schiff base to Asp75 in ppR(M) can be explained by a hydration switch of a water from Asp75 to Asp201, as was proposed for the light-driven proton-pump bacteriorhodopsin (hydration switch model) [Tanimoto, T., Furutani, Y., and Kandori, H. (2003) Biochemistry 42, 2300-2306]. In the transition from ppR(M) to ppR(O), a hydrogen-bonding alteration takes place for another water molecule that forms a strong hydrogen bond.  相似文献   

4.
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.  相似文献   

5.
The retinal protein phoborhodopsin (pR) (also called sensory rhodopsin II) is a specialized photoreceptor pigment used for negative phototaxis in halobacteria. Upon absorption of light, the pigment is transformed into a short-wavelength intermediate, M, that most likely is the signaling state (or its precursor) that triggers the motility response of the cell. The M intermediate thermally decays into the initial pigment, completing the cycle of transformations. In this study we attempted to determine whether M can be converted into the initial state by light. The M intermediate was trapped by the illumination of a water glycerol suspension of phoborhodopsin from Natronobacterium pharaonis called pharaonis phoborhodopsin (ppR) with yellow light (>450 nm) at -50 degrees C. The M intermediate absorbing at 390 nm is stable in the dark at this temperature. We found, however, that M is converted into the initial (or spectrally similar) state with an absorption maximum at 501 nm upon illumination with 380-nm light at -60 degrees C. The reversible transformations ppR if M are accompanied by the perturbation of tryptophan(s) and probably tyrosine(s) residues, as reflected by changes in the UV absorption band. Illumination at lower temperature (-160 degrees C) reveals two intermediates in the photoconversion of M, which we termed M' (or M'(404)) and ppR' (or ppR'(496)). A third photoproduct, ppR'(504), is formed at -110 degrees C during thermal transformations of M'(404) and ppR'(496). The absorption spectrum of M'(404) (maximum at 404 nm) consists of distinct vibronic bands at 362, 382, 404, and 420 nm that are different from the vibronic bands of M at 348, 368, 390, and 415 nm. ppR'(496) has an absorption band that is shifted to shorter wavelengths by 5 nm compared to the initial ppR, whereas ppR'(504) is redshifted by at least 3 nm. As in bacteriorhodopsin, photoexcitation of the M intermediate of ppR and, presumably, photoisomerization of the chromophore during the M --> M' transition result in a dramatic increase in the proton affinity of the Schiff base, followed by its reprotonation during the M' --> ppR' transition. Because the latter reaction occurs at very low temperature, the proton is most likely taken from the counterion (Asp(75)) rather than from the bulk. The phototransformation of M reveals a certain heterogeneity of the pigment, which probably reflects different populations of M or its photoproduct M'. Photoconversion of the M intermediate provides a possible pathway for photoreception in halobacteria and a useful tool for studying the mechanisms of signal transduction by phoborhodopsin (sensory rhodopsin II).  相似文献   

6.
Kandori H  Shimono K  Shichida Y  Kamo N 《Biochemistry》2002,41(14):4554-4559
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR has a blue-shifted absorption spectrum with a spectral shoulder, which is highly unique for the archaeal rhodopsin family. The primary reaction of ppR is a cis-trans photoisomerization of the retinal chromophore to form the K intermediate, like the well-studied proton pump bacteriorhodopsin (BR). Recent comparative FTIR spectroscopy of the K states in ppR and BR revealed that more extended structural changes take place in ppR than in BR with respect to chromophore distortion and protein structural changes [Kandori, H., Shimono, K., Sudo, Y., Iwamoto, M., Shichida, Y., and Kamo, N. (2001) Biochemistry 40, 9238-9246]. FTIR spectroscopy of the N105D mutant protein reported here assigns the vibrational bands at 1704 and 1700 cm(-1) as C=O stretches of Asn105 in ppR and ppR(K), respectively. A comparative investigation between ppR and BR further reveals that the structure at position 105 in ppR is similar to that of the corresponding position (Asp115) in BR; this observation is supported by the recent X-ray crystallographic structures of ppR [Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N., and Spudich, J. L. (2001) Science 293, 1499-1503; Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E. M., Pebay-Peyroulla, E., and Navarro, J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 10131-10136]. Nevertheless, structural changes upon photoisomerization at position 105 in ppR are greater than those at position 115 in BR. As a consequence of a unique chromophore-protein interaction in ppR, extended protein structural changes accompanying retinal photoisomerization occur, and these include Asn105 which is approximately 7 A from the retinal chromophore.  相似文献   

7.
Sudo Y  Furutani Y  Iwamoto M  Kamo N  Kandori H 《Biochemistry》2008,47(9):2866-2874
pharaonis phoborhodopsin ( ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronomonas pharaonis. The X-ray crystallographic structure of ppR is very similar to those of the ion-pumping rhodopsins, bacteriorhodopsin (BR) and halorhodopsin (hR). However, the decay processes of the photocycle intermediates such as M and O are much slower than those of BR and hR, which is advantageous for the sensor function of ppR. Iwamoto et al. previously found that, in a quadruple mutant (P182S/P183E/V194T/T204C; denoted as SETC) of ppR, the decay of the O intermediate was accelerated by approximately 100 times ( t 1/2 approximately 6.6 ms vs 690 ms for the wild type of ppR), being almost equal to that of BR (Iwamoto, M., et al. (2005) Biophys. J. 88, 1215-1223). The mutated residues are located on the extracellular surface (Pro182, Pro183, and Val194) and near the Schiff base (Thr204). The present Fourier-transform infrared (FTIR) spectroscopy of SETC revealed that protein structural changes in the K and M states were similar to those of the wild type. In contrast, the ppR O minus ppR infrared difference spectra of SETC are clearly different from those of the wild type in amide-I (1680-1640 cm (-1)) and S-H stretching (2580-2520 cm (-1)) vibrations. The 1673 (+) and 1656 (-) cm (-1) bands newly appear for SETC in the frequency region typical for the amide-I vibration of the alpha II- and alpha I-helices, respectively. The intensities of the 1673 (+) cm (-1) band of various mutants were well correlated with their O-decay half-times. Since the alpha II-helix possesses a considerably distorted structure, the result implies that distortion of the helix is required for fast O-decay. In addition, the characteristic changes in the S-H stretching vibration of Cys204 were different between SETC and T204C, suggesting that structural change near the Schiff base was induced by mutations of the extracellular surface. We conclude that the lifetime of the O intermediate in ppR is regulated by the distorted alpha-helix and strengthened hydrogen bond of Cys204.  相似文献   

8.
Furutani Y  Sudo Y  Kamo N  Kandori H 《Biochemistry》2003,42(17):4837-4842
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psRII) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR activates the cognate transducer protein, pHtrII, upon absorption of light. ppR and pHtrII form a tight 2:2 complex in the unphotolyzed state, and the interaction is somehow altered during the photocycle of ppR. In this paper, we studied the influence of pHtrII on the structural changes occurring upon retinal photoisomerization in ppR by means of low-temperature FTIR spectroscopy. We trapped the K intermediate at 77 K and compared the ppR(K) minus ppR spectra in the absence and presence of pHtrII. There are no differences in the X-D stretching vibrations (2700-1900 cm(-1)) caused by presence of pHtrII. This result indicates that the hydrogen-bonding network in the Schiff base region is not altered by interaction with pHtrII, which is consistent with the same absorption spectrum of ppR with or without pHtrII. In contrast, the ppR(K) minus ppR infrared difference spectra are clearly influenced by the presence of pHtrII in amide-I (1680-1640 cm(-1)) and amide-A (3350-3250 cm(-1)) vibrations. The identical spectra for the complex of the unlabeled ppR and (13)C- or (15)N-labeled pHtrII indicate that the observed structural changes for the peptide backbone originate from ppR only and are altered by retinal photoisomerization. The changes do not come from pHtrII, implying that the light signal is not transmitted to pHtrII in ppR(K). In addition, we observed D(2)O-insensitive bands at 3479 (-)/3369 (+) cm(-1) only in the presence of pHtrII, which presumably originate from an X-H stretch of an amino acid side chain inside the protein.  相似文献   

9.
Photochemical and subsequent thermal reactions of rhodopsin containing 9-cis-retinal [Rh(9)] or one of four analogues with 9-cis geometries formed from ring-modified retinals, alpha-retinal [alpha Rh(9)], acyclic retinal [AcRh(9)], acyclic alpha-retinal [Ac alpha Rh(9)], and 5-isopropyl-alpha-retinal [P alpha Rh(9)] were investigated by low-temperature spectrophotometry and nanosecond laser photolysis. Irradiation of each pigment at -180 degrees C produced a photosteady-state mixture containing the original 9-cis pigment, its 11-cis pigment, and a photoproduct, indicating that the primary process of each pigment is a photoisomerization of its chromophore. The photoproduct produced by the irradiation of AcRh(9) had an absorption spectrum red shifted from the original AcRh(9) and was identified as the batho intermediate of AcRh(9). It was converted to the lumi intermediate through a metastable species, the BL intermediate, which has never been detected in Rh(9) at low temperature and whose absorption maximum was at shorter wavelengths than that of the batho intermediate. In contrast, the absorption maxima of the photoproducts produced from the other analogue pigments were at shorter wavelengths than those of the original pigments. They were identified as BL intermediates on the basis of their absorption maxima and thermal stabilities. The formation time constant of the lumi intermediate at room temperature was found to be dependent on the extent of modification of the ring portion of the chromophore, decreasing with the complete truncation of the cyclohexenyl ring [Ac alpha Rh(9)] and increasing with the attachment of the isopropyl group to the ring [P alpha Rh(9)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The configuration of the retinylidene chromophore in pharaonis phoborhodopsin (ppR) and its changes during the photoreaction cycle were investigated by means of a chromophore extraction method followed by HPLC analysis. The ppR has an all-trans chromophore, and unlike bacteriorhodopsin, it exhibits no dark isomerization of the chromophore. Irradiation of a ppR sample in the presence of 10 mM hydroxylamine, at which concentration a negligible amount of ppR was bleached, caused the formation of 90% 13-cis- and 10% all-trans-retinal oximes. Because the ppR sample under the continuous irradiation was a mixture containing original ppR, ppRM, and a small amount of ppRO, the above results showed that the chromophores of ppRM and ppRO are in a 13-cis form and an all-trans form, respectively. Therefore, the all-trans chromophore of ppR is isomerized to the 13-cis form on photon absorption, and it is thermally reisomerized to the all-trans form on the conversion process from ppRM to ppRO. The extracted retinal oximes from ppR and ppRO were mainly the 15-syn form, while that from ppRM was mainly the 15-anti form. This fact indicated that the attack of hydroxylamine on the chromophore is stereoselective owing to the unique structure of the chromophore binding site near the Schiff base region of the chromophore.  相似文献   

11.
The photochemical and subsequent thermal reactions of phoborhodopsin (pR490), which mediates the negative phototaxis (phobic reaction) of Halobacterium halobium, were investigated by low-temperature spectrophotometry. At room temperature, the absorption spectrum of pR490 displayed vibrational structure with a maximum at 490 nm and a shoulder at 460 nm, which were remarkably sharpened by cooling, resulting in the appearance of two well-separated peaks. On irradiation of pR490 at -170 degrees C, a photo-steady-state mixture composed of pR490 and two photoproducts, P520 and P480, was formed. P480 had an absorption maximum at 480 nm and thermally converted to pR490 above -160 degrees C, while P520 had an absorption maximum at 515 nm and thermally converted to P350, the next intermediate, above -60 degrees C. Above -30 degrees C, P350 was converted to P530, and then reverted to pR490. P520, P350, and P530 may correspond to K, M, and O intermediates of bacteriorhodopsin, respectively, on the basis of their absorption spectra, but the intermediates corresponding to L and N intermediates were not observed. On the basis of these results, a new scheme of the photoreaction cycle of pR490 was presented.  相似文献   

12.
Archaeal rhodopsins possess a retinal molecule as their chromophores, and their light energy and light signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of the protein then leads to functional processes, proton pump in bacteriorhodopsin and transducer activation in sensory rhodopsins. In the present paper, low-temperature Fourier transform infrared spectroscopy is applied to phoborhodopsin from Natronobacterium pharaonis (ppR), a photoreceptor for the negative phototaxis of the bacteria, and infrared spectral changes before and after photoisomerization are compared with those of bacteriorhodopsin (BR) at 77 K. Spectral comparison of the C--C stretching vibrations of the retinal chromophore shows that chromophore conformation of the polyene chain is similar between ppR and BR. This fact implies that the unique chromophore-protein interaction in ppR, such as the blue-shifted absorption spectrum with vibrational fine structure, originates from both ends, the beta-ionone ring and the Schiff base regions. In fact, less planer ring structure and stronger hydrogen bond of the Schiff base were suggested for ppR. Similar frequency changes upon photoisomerization are observed for the C==N stretch of the retinal Schiff base and the stretch of the neighboring threonine side chain (Thr79 in ppR and Thr89 in BR), suggesting that photoisomerization in ppR is driven by the motion of the Schiff base like BR. Nevertheless, the structure of the K state after photoisomerization is different between ppR and BR. In BR, chromophore distortion is localized in the Schiff base region, as shown in its hydrogen out-of-plane vibrations. In contrast, more extended structural changes take place in ppR in view of chromophore distortion and protein structural changes. Such structure of the K intermediate of ppR is probably correlated with its high thermal stability. In fact, almost identical infrared spectra are obtained between 77 and 170 K in ppR. Unique chromophore-protein interaction and photoisomerization processes in ppR are discussed on the basis of the present infrared spectral comparison with BR.  相似文献   

13.
Fourier transform infrared study of the N intermediate of bacteriorhodopsin   总被引:8,自引:0,他引:8  
Visible absorption spectroscopic experiments show that the N intermediate is the main photoproduct of a highly hydrated film of the light-adapted bacteriorhodopsin (70% water by weight) at pH 10 and 274 K. The difference Fourier transform infrared spectrum between the N intermediate and unphotolyzed light-adapted bacteriorhodopsin was recorded under these conditions. A small amount of the M intermediate present did not affect this spectrum significantly. The difference spectrum exhibited a positive band at 1755 cm-1 (probably due to Asp-85) and a negative band at 1742 cm-1 (due to Asp-96), neither of which was observed for the M intermediate. The spectrum of the N intermediate at pH 7 was nearly identical with that at pH 10. Spectra at pH 10 also were measured with isotope-substituted samples. A vibrational band at 1692 cm-1 due to the peptide bond disappeared, and a band at 1558 cm-1 emerged upon formation of the N intermediate. The spectrum also displayed bands containing the N-H and C15-H in-plane bending vibrational modes at 1394 and 1303 cm-1. These frequencies are similar to those of the L intermediate while the intensities of these bands are larger than those in the L intermediate, suggesting that the Schiff bases of both the L and N intermediates have a strong hydrogen-bonding interaction with the protein and that the C12-H to C15-H region of the chromophore is less twisted in the N intermediate than in the L intermediate.  相似文献   

14.
It is shown that BR and intermediate products of its phototransformation P600, P550 and P415 (the maximum at -196 degrees C at 419 nm) are not paramagnetic. Illumination of samples containing P415 (P419) at -- 196 degrees C with light in the region of 360-480 nm results in the formation of paramagnetic centres with a sunglet spectrum deltaH=18 Oe and g=2.002 (R1). In parallel formation of a new photoproduct P421 in the absorption spectrum is observed. During subsequent heating at -140 degrees C formation of an asymmetric signal with deltaH=45 Oe and g=2.006 and g=2.03 was observed. In the absorption spectra a dark transition. P421-P565 was observed under the same conditions. P565 differs from initial BR P570 as to its photochemical properties. R1 is identified as retinal radical, R2 as a peroxide radical of the BR-complex lipids. Paramagnetic, spectral, and photochemical properties of some products of BR transformation are compared. A scheme of oxidative-phosphorylation processes with participation of Mn ions in BR phototransformation.  相似文献   

15.
Pharaonis phoborhodopsin (ppR), also called pharaonis sensory rhodopsin II, NpSRII, is a photoreceptor of negative phototaxis in Natronomonas (Natronobacterium) pharaonis. The photocycle rate of ppR is slow compared to that of bacteriorhodopsin, despite the similarity in their x-ray structures. The decreased rate of the photocycle of ppR is a result of the longer lifetime of later photo-intermediates such as M- (ppR(M)) and O-intermediates (ppR(O)). In this study, mutants were prepared in which mutated residues were located on the extracellular surface (P182, P183, and V194) and near the Schiff base (T204) including single, triple (P182S/P183E/V194T), and quadruple mutants. The decay of ppR(O) of the triple mutant was accelerated approximately 20-times from 690 ms for the wild-type to 36 ms. Additional mutation resulting in a triple mutant at the 204th position such as T204C or T204S further decreased the decay half-time to 6.6 or 8 ms, almost equal to that of bacteriorhodopsin. The decay half-times of the ppR(O) of mutants (11 species) and those of the wild-type were well-correlated with the pK(a) value of Asp-75 in the dark for the respective mutants as spectroscopically estimated, although there are some exceptions. The implications of these observations are discussed in detail.  相似文献   

16.
Phoborhodopsin (pR) is the fourth retinal pigment of Halobacterium halobium and works as a photoreceptor for the negative phototactic response. A similar pigment was previously found in haloalkaliphilic bacterium (Natronbacterium pharaonis) and also works as the receptor of the negative phototactic response; this pigment is called pharaonis phoborhodopsin (ppR). In this paper, the photocycle of ppR was investigated by means of low-temperature spectrophotometry. The absorption maximum of ppR is located at 498 nm, while that of pR is at 487 nm. The absorption spectra of the two have similar vibrational structures. Irradiation of ppR below -100 degrees C produced a K-like intermediate (ppRK) which was a composite of two components. The original ppR and ppRK were perfectly photoreversible. On warming, ppRK was directly converted to an M-like intermediate without formation of the L-like intermediate. The M-like intermediate was converted to the O-like intermediate at pH 7.2, but the O-like intermediate was not detected at pH 9.0. The O-like intermediate then reverted to the original pigment. On the basis of these findings, the photocycle and the primary photochemical process of ppR are presented.  相似文献   

17.
Phoborhodopsin (also called sensory rhodopsin II, sR-II) is a receptor for the negative phototaxis of Halobacterium salinarum (pR), and pharaonis phoborhodopsin (ppR) is the corresponding receptor of Natronobacterium pharaonis. pR and ppR are retinoid proteins and have a photocycle similar to that of bacteriorhodopsin (bR). A major difference between the photocycle of the ion pump bR and the sensor pR or ppR is found in their turnover rates which are much faster for bR. A reason for this difference might be found in the lack of a proton-donating residue to the Schiff base which is formed between the lysine of the opsin and retinal. To reconstruct a bR-like photochemical behavior, we expressed ppR mutants in Escherichia coli in which proton-donating groups have been reintroduced into the cytoplasmic proton channel. In measurement of the photocycle it could be shown that the F86D mutant of ppR (Phe86 was substituted by Asp) showed a faster decay of M-intermediate than the wild-type, which was even accelerated in the F86D/L40T double mutant.  相似文献   

18.
Phoborhodopsin (pR; also sensory rhodopsin II, sRII) is a retinoid protein in Halobacterium salinarum and works as a receptor of negative phototaxis. Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. In bacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. We expressed pHtrII-free ppR or ppR-pHtrII complex in H. salinarum Pho81/wr(-) cells. Flash-photolysis experiments showed no essential changes between pHtrII-free ppR and the complex. Using SnO2 electrode, which works as a sensitive pH electrode, and envelope membrane vesicles, we showed the photo-induced outward proton transport. This membranous proton transport was also shown using membrane vesicles from Escherichia coli in which ppR was functionally expressed. On the other hand, the proton transport was ceased when ppR formed a complex with pHtrII. Using membrane sheet, it was shown that the complex undergoes first proton uptake and then release during the photocycle, the same as pHtrII-free ppR, although the net proton transport ceases. Taking into consideration that the complex of sRII (pR) and its transducer undergoes extracellular proton circulation (J. Sasaki and J. L., Biophys. J. 77:2145-2152), we inferred that association with pHtrII closes a cytoplasmic channel of ppR, which lead to the extracellular proton circulation.  相似文献   

19.
Sudo Y  Furutani Y  Shimono K  Kamo N  Kandori H 《Biochemistry》2003,42(48):14166-14172
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronobacterium pharaonis. It forms a 2:2 complex with its transducer protein, pHtrII, in membranes and transmits light signals through the change in the protein-protein interaction. We previously found that the ppR(K) minus ppR spectrum in D(2)O possesses vibrational bands of ppR at 3479 (-)/3369 (+) cm(-1) only in the presence of pHtrII [Furutani, Y., Sudo, Y., Kamo, N., and Kandori, H. (2003) Biochemistry 42, 4837-4842]. A D/H-unexchangeable X-H group appears to form a stronger hydrogen bond upon retinal photoisomerization in the ppR-pHtrII complex. This article aims to identify the group by use of various mutant proteins. According to the crystal structure, Tyr-199 of ppR forms a hydrogen bond with Asn-74 of pHtrII in the complex. Nevertheless, the 3479 (-)/3369 (+) cm(-1) bands were preserved in the Y199F mutant, excluding the possibility that the bands are O-H stretches of Tyr-199. On the other hand, Thr-204 and Tyr-174 form a hydrogen bond between the retinal chromophore pocket and the binding surface of the ppR-pHtrII complex. These FTIR measurements revealed that the bands at 3479 (-)/3369 (+) cm(-1) disappeared in the T204A mutant, while being shifted to 3498 (-) and 3474 (+) cm(-1) in the T204S mutant. They appear at 3430 (-)/3402 (+) cm(-1) in the Y174F mutant. From these results, we concluded that the bands at 3479 (-)/3369 (+) cm(-1) originate from the O-H stretch of Thr-204. A stronger hydrogen bond as shown by a large spectral downshift (110 cm(-1)) suggests that the specific hydrogen bonding alteration of Thr-204 takes place upon retinal photoisomerization, which does not occur in the absence of the transducer protein. Thr-204 has been known as an important residue for color tuning and photocycle kinetics in ppR. The results presented here point to an additional important role of Thr-204 in ppR for the interaction with pHtrII. Specific interaction in the complex that involves Thr-204 presumably affects the decay kinetics and binding affinity in the M intermediate.  相似文献   

20.
Pharaonis halorhodopsin (phR) is an inward light-driven chloride ion pump from Natronobacterium pharaonis. In order to clarify the role of Ser-130(phR) residue which corresponds to Ser-115(shR) for salinarum hR on the anion-binding affinity, the wild-type and Ser-130 mutants substituted with Thr, Cys and Ala were expressed in E. coli cells and solubilized with 0.1% n-dodecyl beta-D-maltopyranoside The absorption maximum (lambda(max)) of the S130T mutant indicated a blue shift from that of the wild type in the absence and presence of chloride. For S130A, a large red shift (12 nm) in the absence of chloride was observed. The wild-type and all mutants showed the blue-shift of lambda(max) upon Cl(-) addition, from which the dissociation constants of Cl(-) were determined. The dissociation constants were 5, 89, 153 and 159 mM for the wild-type, S130A, S130T and S130C, respectively, at pH 7.0 and 25 degrees C. Circular dichroic spectra of the wild-type and the Ser-130 mutants exhibited an oligomerization. The present study revealed that the Ser-130 of N. pharaonis halorhodopsin is important for the chloride binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号