首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of secondary structures of DNA oligonucleotides on thermodynamics and kinetics at the formation of their bimolecular complexes (duplexes) has been studied. The models considering inherent secondary structures of duplex components and their influence on quantitative thermodynamic and kinetic characteristics of the duplexes have been developed. The values of thermodynamic impacts given by individual structural elements of the double helix have been shown to depend on hairpin structuring of the duplex components. The "concentration" method to consider oligonucleotides intramolecular structure with thermodynamic parameters of bimolecular duplex formation has been proposed. According to stop-flow measurements, the observed values of association and dissociation constants are influenced by the presence of inherent structures in duplex components. The influence observed is increased with the lowering of the sample temperature. The analysis of experimental data involving the developed models provides the possibility to determine "proper" kinetic constants for the helix-to-coil transition. The difference between observed and calculated rate constants can amount up to two or more orders of magnitude.  相似文献   

2.
This study investigated the influence of the nature of oligonucleotides on the abilities to form antiparallel and parallel duplexes. Base pairing of homopurine DNA, 2’-O-MeRNA and RNA oligonucleotides with respective homopyrimidine DNA, 2’-O-MeRNA and RNA as well as chimeric oligonucleotides containing LNA resulted in the formation of 18 various duplexes. UV melting, circular dichroism and fluorescence studies revealed the influence of nucleotide composition on duplex structure and thermal stability depending on the buffer pH value. Most duplexes simultaneously adopted both orientations. However, at pH 5.0, parallel duplexes were more favorable. Moreover, the presence of LNA nucleotides within a homopyrimidine strand favored the formation of parallel duplexes.  相似文献   

3.
J Klysik  K Rippe    T M Jovin 《Nucleic acids research》1991,19(25):7145-7154
DNA oligonucleotides with appropriate sequences can form a stable duplex in which the two strands are paired in a parallel orientation instead of as the conventional antiparallel double helix of B-DNA. In parallel-stranded DNA (ps-DNA) base pairing is noncanonical with the glycosidic bonds in a trans orientation. The two grooves are equivalent. We have synthesized DNA duplexes consisting of a central parallel-stranded (dA)15.(dT)15 tract flanked by normal antiparallel regions, and ligated them into the pUC18 plasmid. The effect of negative supercoiling on the covalently closed circular molecules was studied by two-dimensional agarose gel electrophoresis and by chemical modification with OsO4-pyridine (Os,py) and diethylpyrocarbonate (DEPC). The following results were obtained: (i) The ps insert, and by inference ps-DNA in general, adopts a right handed helical form. (ii) Upon increasing the negative superhelix density (-sigma) to greater than 0.03 the 15 bp ps insert undergoes a major transition leading to a relaxation corresponding to a reduction in twist of approximately 2.5 helical turns. The transition free surgery is approximately kcal/mol. (iii) The chemical modification pattern of the resulting structure suggests that the purine strand folds back and associates with the pyrimidine strand, forming a novel intramolecular triplex structure consisting of d(A.A.T) base triplets. A model for the triplex conformation is proposed and its thermodynamic properties are analyzed by statistical mechanics.  相似文献   

4.
The influence of secondary structures of DNA oligonucleotides on thermodynamics and kinetics at the formation of their bimolecular complexes (duplexes) has been studied. The models considering inherent secondary structures of duplex components and their influence on quantitative thermodynamic and kinetic characteristics of the duplexes have been developed. The values of thermodynamic impacts given by individual structural elements of the double helix have been shown to depend on hairpin structuring of the duplex components. The «concentration» method to consider oligonucleotides intramolecular structure with thermodynamic parameters of bimolecular duplex formation has been proposed. According to stop-flow measurements, the observed values of association and dissociation constants are influenced by the presence of inherent structures in duplex components. The influence observed is increased with the lowering of the sample temperature. The analysis of experimental data involving the developed models provides the possibility to determine «proper» kinetic constants for the helix-to-coil transition. The difference between observed and calculated rate constants can amount up to two or more orders of magnitude.  相似文献   

5.
Hughesman CB  Turner RF  Haynes CA 《Biochemistry》2011,50(23):5354-5368
Melting thermodynamic data obtained by differential scanning calorimetry (DSC) are reported for 43 duplexed oligonucleotides containing one or more locked nucleic acid (LNA) substitutions. The measured heat capacity change (ΔC(p)) for the helix-to-coil transition is used to compute the changes in enthalpy and entropy for melting of an LNA-bearing duplex at the T(m) of its corresponding isosequential unmodified DNA duplex to allow rigorous thermodynamic analysis of the stability enhancements provided by LNA substitutions. Contrary to previous studies, our analysis shows that the origin of the improved stability is almost exclusively a net reduction (ΔΔS° < 0) in the entropy gain accompanying the helix-to-coil transition, with the magnitude of the reduction dependent on the type of nucleobase and its base pairing properties. This knowledge and our average measured value for ΔC(p) of 42 ± 11 cal mol(-1) K(-1) bp(-1) are then used to derive a new model that accurately predicts melting thermodynamics and the increased melting temperature (ΔT(m)) of heteroduplexes formed between an unmodified DNA strand and a complementary strand containing any number and configuration of standard LNA nucleotides A, T, C, and G. This single-base thermodynamic (SBT) model requires only four entropy-related parameters in addition to ΔC(p). Finally, DSC data for 20 duplexes containing the nucleobase-modified LNAs 2-aminoadenine (D) and 2-thiothymine (H) are reported and used to determine SBT model parameters for D and H. The data and model suggest that along with the greater stability enhancement provided by D and H bases relative to their corresponding A and T analogues, the unique pseudocomplementary properties of D-H base pairs may make their use appealing for in vitro and in vivo applications.  相似文献   

6.
To facilitate design of short isoenergetic hybridization probes for RNA, we report the influence of adding 5'- or 3'-terminal 2'-O-methylguanosine (GM), LNA-guanosine (GL), or 3'-terminal pyrene pseudo-nucleotide (PPN) on the thermodynamic stability of 2'-O-methyl-RNA/RNA (2'-O-Me-RNA/RNA) duplexes with sequences 5'CMGMGMCMAM/3'AAXGCCGUXAA, where X is A, C, G, or U. A 3'-terminal GM or GL added to the 2'-O-Me-RNA strand to form a G-A, G-G or G-U mismatch enhances thermodynamic stability (DeltaDeltaG degrees 37) of the 2'-O-Me-RNA/RNA duplexes on average by 0.7 and 1.5 kcal/mol, respectively. A 3'-terminal GM or GL in a GM-C or GL-C pair stabilizes the 2'-O-Me-RNA/RNA duplex by 2.6 and 3.4 kcal/mol, respectively. A 5'-terminal GM or GL in a G-A or G-G mismatch provided less stabilization in comparison with a 3'-terminal G-A or G-G mismatch, but more stabilization in a G-C or G-U pair. In contrast to guanosine derivatives, pyrene residue (P) as PPN at the 3'-terminal position enhances thermodynamic stability of the 2'-O-Me-RNA/RNA duplexes on average by 2.3 +/- 0.1 kcal/mol, relatively independent of the type of ribonucleotide placed in the opposite strand. The thermodynamic data can be applied to design 2'-O-Me-RNA/RNA duplexes with enhanced thermodynamic stability that is also sequence independent. This is useful for design of hybridization probes to interrogate RNA structure and/or expression by microarray and other methods.  相似文献   

7.
Homopurine deoxyribonucleoside phosphorothioates possessing all internucleotide linkages of R(P) configuration form a duplex with an RNA or 2'-OMe-RNA strand with Hoogsteen complementarity. The duplexes formed with RNA templates are thermally stable at pH 5.3, while those formed with a 2'-OMe-RNA are stable at neutrality. Melting temperature and fluorescence quenching experiments indicate that the strands are parallel. Remarkably, these duplexes are thermally more stable than parallel Hoogsteen duplexes and antiparallel Watson-Crick duplexes formed by unmodified homopurine DNA molecules of the same sequence with corresponding RNA templates.  相似文献   

8.
Kaur H  Arora A  Wengel J  Maiti S 《Biochemistry》2006,45(23):7347-7355
A locked nucleic acid (LNA) monomer is a conformationally restricted nucleotide analogue with an extra 2'-O, 4'-C-methylene bridge added to the ribose ring. LNA-modified oligonucleotides are known to exhibit enhanced hybridization affinity toward complementary DNA and RNA. In this work, we have evaluated the hybridization thermodynamics of a series of LNA-substituted DNA octamers, modified to various extents by one to three LNA substitutions, introduced at either adenine (5'-AGCACCAG) or thymine (5'-TGCTCCTG) nucleotides. To understand the energetics, counterion effects, and the hydration contribution of the incorporation of LNA modification, a combination of spectroscopic and calorimetric techniques was used. The CD spectra of the corresponding duplexes showed that the modified duplexes adopt an A-type conformation. UV and DSC melting studies revealed that each type of duplex unfolds in a two-state transition. A complete thermodynamic profile at 5 degrees C indicated that the net effect of modification on thermodynamic parameters might be positional and that the neighboring bases flanking the modification might influence the favorable formation of the modified duplexes. Furthermore, relative to the formation of the unmodified reference duplexes, the formation of modified duplexes is accompanied by a higher uptake of counterions and a lower uptake of water molecules.  相似文献   

9.
Wright DJ  Rice JL  Yanker DM  Znosko BM 《Biochemistry》2007,46(15):4625-4634
An enzyme family known as adenosine deaminases that act on RNA (ADARs) catalyzes adenosine deamination in RNA. ADARs act on RNA that is largely double-stranded and convert adenosine to inosine, resulting, in many cases, in an I x U pair. Thermodynamic parameters derived from optical melting studies are reported for a series of 14 oligoribonucleotides containing single I x U pairs adjacent to Watson-Crick pairs. In order to determine unique linearly independent nearest neighbor parameters for I x U pairs, four duplexes containing 3'-terminal I x U pairs and four duplexes containing 5'-terminal I x U pairs have also been thermodynamically characterized. This data was combined with previously published data of seven duplexes containing internal, terminal, or tandem I x U pairs from Strobel et al. [Strobel, S. A., Cech, T. R., Usman, N., and Beigelman, L. (1994) Biochemistry 33, 13824-13838] and Serra et al. [Serra, M. J., Smolter, P. E., and Westhof, E. (2004) Nucleic Acids Res. 32, 1824-1828]. On average, a duplex with an internal I x U pair is 2.3 kcal/mol less stable than the same duplex with an A-U pair, however, a duplex with a terminal I x U pair is 0.8 kcal/mol more stable than the same duplex with an A-U pair. Although isosteric with a G-U pair, on average, a duplex with an internal I x U pair is 1.9 kcal/mol less stable than the same duplex with a G-U pair, however, a duplex with a terminal I x U pair is 0.9 kcal/mol more stable than the same duplex with a G-U pair. Duplexes with tandem I x U pairs are on average 5.9 and 3.8 kcal/mol less stable than the same duplex with tandem A-U or tandem G-U pairs, respectively. Using the combined thermodynamic data and a complete linear least-squares fitting routine, nearest neighbor parameters for all nearest neighbor combinations of I x U pairs and an additional parameter for terminal I x U pairs have been derived.  相似文献   

10.
We have used 2D NMR spectroscopy to study the sugar conformations of oligonucleotides containing a conformationally restricted nucleotide (LNA) with a 2'-O, 4'-C-methylene bridge. We have investigated a modified 9-mer single stranded oligonucleotide as well as three 9- and 10-mer modified oligonucleotides hybridized to unmodified DNA. The single-stranded LNA contained three modifications whereas the duplexes contained one, three and four modifications, respectively. The LNA:DNA duplexes have normal Watson-Crick base-pairing with all the nucleotides in anti-conformation. By use of selective DQF-COSY spectra we determined the ratio between the N-type (C3'-endo) and S-type (C2'-endo) sugar conformations of the nucleotides. In contrast to the corresponding single-stranded DNA (ssDNA), we found that the sugar conformations of the single-stranded LNA oligonucleotide (ssLNA) cannot be described by a major S-type conformer of all the nucleotides. The nucleotides flanking an LNA nucleotide have sugar conformations with a significant population of the N-type conformer. Similarly, the sugar conformations of the nucleotides in the LNA:DNA duplexes flanking a modification were also shown to have significant contributions from the N-type conformation. In all cases, the sugar conformations of the nucleotides in the complementary DNA strand in the duplex remain in the S-type conformation. We found that the locked conformation of the LNA nucleotides both in ssLNA and in the duplexes organize the phosphate backbone in such a way as to introduce higher population of the N-type conformation. These conformational changes are associated with an improved stacking of the nucleobases. Based on the results reported herein, we propose that the exceptional stability of the LNA modified duplexes is caused by a quenching of concerted local backbone motions (preorganization) by the LNA nucleotides in ssLNA so as to decrease the entropy loss on duplex formation combined with a more efficient stacking of the nucleobases.  相似文献   

11.
To improve the previous DNA/DNA nearest-neighbor parameters, thermodynamic parameters (deltaH degrees, deltaS degrees and deltaG degrees) of 50 DNA/DNA duplexes were measured. Enthalpy change of a helix initiation factor is also considered though the parameters reported recently did not contain the factor. A helix initiation factor for DNA/DNA duplex determined here was the same as that of RNA/RNA duplex (deltaG degrees(37) = 3.4 kcal/mol). The improved nearest-neighbor parameters reproduced not only these 50 experimental values used here but also 15 other experimental values obtained in different studies. Comparing deltaG degrees(37) values of DNA/DNA nearest-neighbor parameters obtained here with those of RNA/RNA and RNA/DNA, RNA/RNA duplex was generally the most stable of the three kinds of duplexes with the same nearest-neighbor sequences. Which is more stable between DNA/DNA and RNA/DNA duplexes is sequence dependent.  相似文献   

12.
The thermodynamics of self-assembly of a 14 base pair DNA double helix from complementary strands have been investigated by titration (ITC) and differential scanning (DSC) calorimetry, in conjunction with van't Hoff analysis of UV thermal scans of individual strands. These studies demonstrate that thermodynamic characterization of the temperature-dependent contributions of coupled conformational equilibria in the individual "denatured" strands and in the duplex is essential to understand the origins of duplex stability and to derive stability prediction schemes of general applicability. ITC studies of strand association at 293 K and 120 mM Na+ yield an enthalpy change of -73 +/- 2 kcal (mol of duplex)-1. ITC studies between 282 and 312 K at 20, 50, and 120 mM Na+ show that the enthalpy of duplex formation is only weakly salt concentration-dependent but is very strongly temperature-dependent, decreasing approximately linearly with increasing temperature with a heat capacity change (282-312 K) of -1.3 +/- 0.1 kcal K-1 (mol of duplex)-1. From DSC denaturation studies in 120 mM Na+, we obtain an enthalpy of duplex formation of -120 +/- 5 kcal (mol of duplex)-1 and an estimate of the corresponding heat capacity change of -0.8 +/- 0.4 kcal K-1 (mol of duplex)-1 at the Tm of 339 K. van't Hoff analysis of UV thermal scans on the individual strands indicates that single helix formation is noncooperative with a temperature-independent enthalpy change of -5.5 +/- 0.5 kcal at 120 mM Na+. From these observed enthalpy and heat capacity changes, we obtain the corresponding thermodynamic quantities for two fundamental processes: (i) formation of single helices from disordered strands, involving only intrastrand (vertical) interactions between neighboring bases; and (ii) formation of double helices by association (docking) of single helical strands, involving interstrand (horizontal and vertical) interactions. At 293 K and 120 mM Na+, we calculate that the enthalpy change for association of single helical strands is approximately -64 kcal (mol of duplex)-1 as compared to -210 kcal (mol of duplex)-1 calculated for duplex formation from completely unstructured single strands and to the experimental ITC value of -73 kcal (mol of duplex)-1. The intrinsic heat capacity change for association of single helical strands to form the duplex is found to be small and positive [ approximately 0.1 kcal K-1 (mol of duplex)-1], in agreement with the result of a surface area analysis, which also predicts an undetectably small heat capacity change for single helix formation.  相似文献   

13.
Booth J  Brown T  Vadhia SJ  Lack O  Cummins WJ  Trent JO  Lane AN 《Biochemistry》2005,44(12):4710-4719
DNA duplexes are stabilized by aminopropynyl modification of pyrimidines at the 5 position. A combination of thermodynamic analyses as a function of ionic strength, NMR, and molecular modeling has been applied to determine the origin of the stabilization. UV melting studies of a dodecamer bearing one, two, or three nonadjacent modified dU and dC and of a single dU(8) in the Dickerson-Drew dodecamer revealed that the modifications are essentially additive in terms of T(m), DeltaG, and DeltaH, and there is little difference between dU and dC. The free energy change was parsed into electrostatic and nonelectrostatic components, which showed a significant contribution from charge interactions at physiological ionic strength but also a nonelectrostatic contribution that arises in part from hydration. NMR spectroscopy of the modified Dickerson-Drew dodecamer revealed that the conformation of the duplexes is not significantly altered by the modifications, though (31)P NMR shows that the positive charge may affect ionic interactions with the oxygen atoms of the neighboring phosphates. The modified duplex showed significant hydration in both major and minor grooves. The single strands were also analyzed by NMR, which showed evidence of significant stacking interactions in the modified oligonucleotide. Parsing the energy contribution has shown that electrostatics and hydration can produce substantial increases in thermodynamic stability without significant changes in the conformation of the duplex state. These considerations have significance for the design of oligonucleotides used for hybridization.  相似文献   

14.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

15.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

16.
The effects of 5-fluorouridine (FUrd) and 5-fluorodeoxyuridine (FdUrd) substitution on the stabilities of duplex RNA and DNA have been studied to determine how FUrd substitution in nucleic acids may alter the efficiency of biochemical processes that require complementary base pairing for molecular recognition. The parent sequence, 5'-GCGAAUUCGC, contains two non-equivalent uridines. Eight oligonucleotides (four RNA and four DNA) were prepared with either zero, one or two Urd substituted by FUrd. The stability of each self-complementary duplex was determined by measuring the absorbance at 260 nm as a function of temperature. Tm values were calculated from the first derivative of the absorbance versus temperature profiles and values for delta H0 and delta S0 were calculated from the concentration dependence of the Tm. Individual absorbance versus temperature curves were also analyzed by a parametric approach to calculate thermodynamic parameters for the duplex to single-stranded transition. Analysis of the thermodynamic parameters for each oligonucleotide revealed that FUrd substitution had sequence-dependent effects in both A-form RNA and B-form DNA duplexes. Conservation of helix geometry in FUrd-substituted duplexes was determined by CD spectroscopy. FUrd substitution at a single site in RNA stabilized the duplex (delta delta G37 = 0.8 kcal/mol), largely due to more favorable stacking interactions. FdUrd substitution at a single site in DNA destabilized the duplex (delta delta G37 = 0.3 kcal/mol) as a consequence of less favorable stacking interactions. All duplexes melt via single cooperative transitions.  相似文献   

17.
H Torigoe  R Shimizume  A Sarai  H Shindo 《Biochemistry》1999,38(44):14653-14659
We have investigated effects of chemical modifications of a third strand on the thermodynamic and kinetic properties of the triplex formation between a 23-bp duplex and each of four kinds of 15-mer chemically modified third strands using isothermal titration calorimetry and interaction analysis system. The chemical modifications of the third strand included one base modification, with replacement of thymine by uracil; two sugar moiety modifications, RNA and 2'-O-methyl-RNA; and one phosphate backbone modification, with replacement of phosphodiester by phosphorothioate backbone. The thermodynamic and kinetic parameters obtained were similar in magnitude at room temperature for the triplex formation with the base-modified and the sugar-modified third strands. By contrast, binding constant for the triplex formation with the third strand containing phosphorothioate backbone was much smaller by a factor of 10 than that for the other triplex formations. Kinetic analyses have also demonstrated that the third strand containing phosphorothioate backbone was much slower in the association step and much faster in the dissociation step than the other third strands, which resulted in the much smaller binding constant. The reason for the instability of the triplex with the third strand containing phosphorothioate backbone will be discussed. We conclude that, at least in the triplex formation with the chemically modified third strands studied in the present work, the modification of phosphate backbone of the third strand produces more significant effect on the triplex formation than the modifications of base and sugar moiety.  相似文献   

18.
K Zieba  T M Chu  D W Kupke  L A Marky 《Biochemistry》1991,30(32):8018-8026
The role of water in the formation of stable duplexes of nucleic acids is being studied by determining the concurrent volume change, heats, and counterion uptake that accompany the duplexation process. The variability of the volume contraction that we have observed in the formation of a variety of homoduplexes suggests that sequence and conformation acutely affect the degree of hydration. We have used a combination of densimetric and calorimetric techniques to measure the change in volume and enthalpy resulting from the mixing of two complementary strands to form (a) fully paired duplexes with 10 or 11 base pairs and (b) bulged decameric duplexes with an extra dA or dT unmatched residue. We also monitored absorbance vs temperature profiles as a function of strand and salt concentration for all four duplexes. Relative to the decamer duplex, insertion of an extra dA.dT base pair to form an undecamer duplex results in a favorable enthalpy of -5.6 kcal/mol that is nearly compensated by an unfavorable entropy term of -5.1 kcal/mol. This enthalpy difference correlates with a differential uptake of water molecules, corresponding to an additional hydration of 16 mol of water molecules/mol of base pair. Relative to the fully paired duplexes, both bulged duplexes are 12-16 degrees C less stable and exhibit marginally larger counterion uptake on forming the duplex. The enthalpy change is slightly lower for the T-bulge duplex and less still for the A-bulge duplex. The volume change results indicate that an unmatched residue increases the amount of coulombic and/or structural hydration. The combined results strongly suggest that the destabilizing forces in bulged duplexes are partially compensated by an increase in hydration levels.  相似文献   

19.
Branched DNA molecules arise transiently as intermediates in genetic recombination or on extrusion of cruciforms from covalent circular DNA duplexes that contain palindromic sequences. The free energy of these structures relative to normal DNA duplexes is of interest both physically and biologically. Oligonucleotide complexes that can form stable branched structures, DNA junctions, have made it possible to model normally unstable branched states of DNA such as Holliday recombinational intermediates. We present here an evaluation of the free energy of creating four-arm branch points in duplex DNA, using a system of two complementary junctions and four DNA duplexes formed from different combinations of the same set of eight 16-mer strands. The thermodynamics of formation of each branched structure from the matching pair of intact duplexes have been estimated in two experiments. In the first, labeled strands are allowed to partition between duplexes and junctions in a competition assay on polyacrylamide gels. In the second, the heats of forming branched or linear molecules from the component strands have been determined by titration microcalorimetry at several temperatures. Taken together these measurements allow us to determine the standard thermodynamic parameters for the process of creating a branch in an otherwise normal DNA duplex. The free energy for reacting two 16-mer duplexes to yield a four-arm junction in which the branch site is incapable of migrating is + 1.1 (+/- 0.4) kcal mol-1 (at 18 degrees C, 10 mM-Mg2+). Analysis of the distribution of duplex and tetramer products by electrophoresis confirms that the free energy difference between the four duplexes and two junctions is small at this temperature. The associated enthalpy change at 18 degrees C is +27.1 (+/- 1.3) kcal mol-1, while the entropy is +89 (+/- 30) cal K-1 mol-1. The free energy for branching is temperature dependent, with a large unfavorable enthalpy change compensated by a favorable entropy term. Since forming one four-stranded complex from two duplexes should be an entropically unfavorable process, branch formation is likely to be accompanied by significant changes in hydration and ion binding. A significant apparent delta Cp is also observed for the formation of one mole of junction, +0.97 (+/-0.05) kcal deg-1 mol-1.  相似文献   

20.
This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in β-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2′-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号