首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise (n = 8) or rest (n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg x kg-1x min-1, time (t) = 0-90 min] periods. 3-O-[3H]methylglucose (absorbed actively, facilitatively, and passively) and l-[14C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg x kg-1 x min-1) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 +/- 0.47 and 4.02 +/- 0.53 mg x kg-1x min-1). Passive gut glucose absorption increased approximately 100% after exercise (0.93 +/- 0.06 and 0.45 +/- 0.07 mg x kg-1 x min-1). Transport-mediated glucose absorption increased by approximately 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1). that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2). that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1.  相似文献   

2.
3.
4.
1. Acute pre-treatment with either mannoheptulose or streptozotocin--both compounds acting as powerful suppressors of insulin secretion--caused a significant decrease on the in vivo rate of intestinal glucose absorption following an intragastric [U-14C]glucose administration. 2. Mannoheptulose treatment also lowered the rate of whole-body oxidation of the administered tracer. 3. Insulin had no effect on the metabolic fate of [U-14C]glucose by isolated enterocytes. 4. However, the rate of glucose uptake, measured by the oxidation of [1-14C]glucose to 14CO2 in the presence of phenazine methosulphate, was decreased by insulin at concentrations of 50-200 munits/ml. 5. In addition, the rate of transport of [U-14C]glucose by brush-border membrane vesicles was also inhibited by insulin at high concentrations (100-1000 munits/ml). 6. This indicated that insulin acts by inhibiting glucose transport in isolated in vitro preparations. 7. Acute pre-treatment with either mannoheptulose or streptozotocin caused a significant decrease in the rate of gastric emptying, measured as the distribution of [3H]insulin along the gastrointestinal tract, following an intragastric glucose load. 8. It is concluded that insulin secretion modulates intestinal glucose absorption in vivo by enhancing gastric emptying in spite of the inhibitory effects of glucose transport observed with in vitro preparations.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The isotherm for glucose absorption by aged potato (Solanum tuberosum var. Russet Burbank) discs shows four distinct phases in the concentration ranges 1.0 to 75 μm, 75 μm to 1.5 mm, 1.5 to 15 mm, and 15 to 100 mm, respectively. Each segment of the multiphasic isotherm, when plotted reciprocally by the method of Lineweaver and Burk or of Hofstee, without regard for uptake in earlier phases, indicates absorption rate to be a hyperbolic function of concentration. The observations suggest that glucose uptake is carrier-mediated, and that the transport barrier undergoes a series of all-or-none transformations at critical external concentrations, yielding successive new and higher values for the parameters Km and Vmax 3-O-Methyl glucose, a nonmetabolizable analogue of glucose, shows the same multiphasic absorption isotherm, with Km values essentially similar to those for glucose uptake, and Vmax values somewhat lower than those for glucose absorption. Whereas the first three phases of the absorption isotherm are taken to reflect passage across the plasma membrane, the fourth phase may reflect kinetics of glucose or 3-O-methyl glucose transport to the vacuole.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号