首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
During Xenopus development, the synthesis of ribosomal proteins is regulated at the translational level. To identify the region of the ribosomal protein mRNAs responsible for their typical translational behavior, we constructed a fused gene in which the upstream sequences (promoter) and the 5' untranslated sequence (first exon) of the gene coding for Xenopus ribosomal protein S19 were joined to the coding portion of the procaryotic chloramphenicol acetyltransferase (CAT) gene deleted of its own 5' untranslated region. This fused gene was introduced in vivo by microinjection into Xenopus fertilized eggs, and its activity was monitored during embryogenesis. By analyzing the pattern of appearance of CAT activity and the distribution of the S19-CAT mRNA between polysomes and messenger ribonucleoproteins, it was concluded that the 35-nucleotide-long 5' untranslated region of the S19 mRNA is able to confer to the fused S19-CAT mRNA the translational behavior typical of ribosomal proteins during Xenopus embryo development.  相似文献   

4.
Cellular protein synthesis is a complex polymerization process carried out by multiple ribosomes translating individual mRNAs. The process must be responsive to rapidly changing conditions in the cell that could cause ribosomal pausing and queuing. In some circumstances, pausing of a bacterial ribosome can trigger translational abandonment via the process of trans-translation, mediated by tmRNA (transfer-messenger RNA) and endonucleases. Together, these factors release the ribosome from the mRNA and target the incomplete polypeptide for destruction. In eukaryotes, ribosomal pausing can initiate an analogous process carried out by the Dom34p and Hbs1p proteins, which trigger endonucleolytic attack of the mRNA, a process termed mRNA no-go decay. However, ribosomal pausing can also be employed for regulatory purposes, and controlled translational delays are used to help co-translational folding of the nascent polypeptide on the ribosome, as well as a tactic to delay translation of a protein while its encoding mRNA is being localized within the cell. However, other responses to pausing trigger ribosomal frameshift events. Recent discoveries are thus revealing a wide variety of mechanisms used to respond to translational pausing and thus regulate the flow of ribosomal traffic on the mRNA population.  相似文献   

5.
Cellular protein synthesis is a complex polymerization process carried out by multiple ribosomes translating individual mRNAs. The process must be responsive to rapidly changing conditions in the cell that could cause ribosomal pausing and queuing. In some circumstances, pausing of a bacterial ribosome can trigger translational abandonment via the process of trans-translation, mediated by tmRNA (transfer-messenger RNA) and endonucleases. Together, these factors release the ribosome from the mRNA and target the incomplete polypeptide for destruction. In eukaryotes, ribosomal pausing can initiate an analogous process carried out by the Dom34p and Hbs1p proteins, which trigger endonucleolytic attack of the mRNA, a process termed mRNA no-go decay. However, ribosomal pausing can also be employed for regulatory purposes, and controlled translational delays are used to help co-translational folding of the nascent polypeptide on the ribosome, as well as a tactic to delay translation of a protein while its encoding mRNA is being localized within the cell. However, other responses to pausing trigger ribosomal frameshift events. Recent discoveries are thus revealing a wide variety of mechanisms used to respond to translational pausing and thus regulate the flow of ribosomal traffic on the mRNA population.  相似文献   

6.
The genetic information in DNA is transcribed to mRNA and then translated to proteins, which form the building blocks of life. Translation, or protein synthesis, is hence a central cellular process. We have developed a gene-sequence-specific mechanistic model for the translation machinery, which accounts for all the elementary steps of the translation mechanism. We performed a sensitivity analysis to determine the effects of kinetic parameters and concentrations of the translational components on protein synthesis rate. Utilizing our mathematical framework and sensitivity analysis, we investigated the translational kinetic properties of a single mRNA species in Escherichia coli. We propose that translation rate at a given polysome size depends on the complex interplay between ribosomal occupancy of elongation phase intermediate states and ribosome distributions with respect to codon position along the length of the mRNA, and this interplay leads to polysome self-organization that drives translation rate to maximum levels.  相似文献   

7.
Control of polypeptide synthesis plays an important role in cell proliferation and translation rates generally reflect the growth state of the cultured eukaryotic cell. Physiological regulation of protein synthesis is almost always exerted at the level of polypeptide chain initiation, with the binding of mRNA to the small ribosomal subunit a rate-limiting step in many cell systems. Studies have indicated key roles in the regulation of protein synthesis for the structural features of mRNA molecules and phosphorylation of initiation factors which catalyse this process. This review focusses on translational regulation at the level of mRNA binding to the ribosome and the role of phosphorylation of initiation factors in mediating both quantitative and qualitative control. The identity of putative kinases which may mediate these processes is addressed and a possible model for the role of a transient activation of initiation factors in cell growth or differentiation is presented.  相似文献   

8.
9.
From ribosomal washes of neuroblastoma cells infected with Semliki Forest virus (SFV) a protein of Mr 33000 was purified, which comigrated with the viral capsid protein on sodium dodecyl sulfate/polyacrylamide gels and was recognized by antibodies against the capsid protein of SFV. This protein selectively inhibits the translation of host and early viral 42S mRNA in vitro, but has no effect on late viral 26S and encephalomyocarditis virus mRNA translation. Eukaryotic initiation factor 4B and cap-binding protein restore the translation of host and 42S mRNA to control levels. The capsid protein specifically prevents the binding of host mRNA into 80S initiation complexes, but has no effect on that of late viral mRNA. We propose that the capsid protein is the component responsible for the shut-off of host protein synthesis in SFV-infected cells and for the decreased translational activity of the crude ribosomal washes from these cells.  相似文献   

10.
Summary Ribosomal protein synthesis is regulated by controlling the fraction of mRNA associated with polysomes. It is known that this value changes in different developmental stages during Xenopus embryogenesis or, more generally, with changing cell growth conditions. We present here an analysis of the proportion of mRNA loaded on polysomes, carried out with probes for five different ribosomal proteins on several batches of Xenopus embryos obtained from different individuals. The results obtained indicate the existence of probe-dependent and individual differences, which reflect genetic variations in the cis- and trans-acting regulatory elements responsible for translational regulation. The fraction of ribosomal protein mRNA loaded onto polysomes can be used as an index of an individual's capacity for ribosome production.  相似文献   

11.
12.
Maintenance of cellular protein stores in skeletal muscle depends on a tightly regulated synthesis-degradation equilibrium that is conditionally modulated under an extensive range of physiological and pathophysiological circumstances. Recent studies have established the initiation phase of mRNA translation as a pivotal site of regulation for global rates of protein synthesis, as well as a site through which the synthesis of specific proteins is controlled. The protein synthetic pathway is exquisitely sensitive to the availability of hormones and nutrients and employs a comprehensive integrative strategy to interpret the information provided by hormonal and nutritional cues. The translational repressor, eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and the 70-kDa ribosomal protein S6 kinase (S6K1) have emerged as important components of this strategy, and together they coordinate the behavior of both eukaryotic initiation factors and the ribosome. This review discusses the role of 4E-BP1 and S6K1 in translational control and outlines the mechanisms through which hormones and nutrients effect changes in mRNA translation through the influence of these translational effectors.  相似文献   

13.
14.
E. coli ribosomal protein L1 is a translational repressor of the synthesis in vitro of both proteins encoded in the L11 operon (L11 and L1). L1 is shown to act at a single target site within the first 160 bases of the bicistronic mRNA, near (or at) the translation initiation site of the L11 cistron. Synthesis of L1 apparently requires translation of the preceding L11 cistron, allowing regulation of the synthesis of both proteins from a single mRNA target site. This observation suggests a sequential translation mechanism that results in the equimolar synthesis rates of the two proteins observed in vivo. It was found that the presence of 23S rRNA, but not 16S rRNA, relieves translational inhibition by L1. L1 presumably recognizes structural features of the mRNA target site that are homologous to the L1-binding site of 23S rRNA. Although previous work indicated that translationally inhibited ribosomal protein mRNA is degraded in vivo, L1 repressor action in the present in vitro system was found not to involve mRNA degradation.  相似文献   

15.
16.
17.
The structure of a ribosomal protein S8/spc operon mRNA complex   总被引:2,自引:0,他引:2  
In bacteria, translation of all the ribosomal protein cistrons in the spc operon mRNA is repressed by the binding of the product of one of them, S8, to an internal sequence at the 5' end of the L5 cistron. The way in which the first two genes of the spc operon are regulated, retroregulation, is mechanistically distinct from translational repression by S8 of the genes from L5 onward. A 2.8 A resolution crystal structure has been obtained of Escherichia coli S8 bound to this site. Despite sequence differences, the structure of this complex is almost identical to that of the S8/helix 21 complex seen in the small ribosomal subunit, consistent with the hypothesis that autogenous regulation of ribosomal protein synthesis results from conformational similarities between mRNAs and rRNAs. S8 binding must repress the translation of its own mRNA by inhibiting the formation of a ribosomal initiation complex at the start of the L5 cistron.  相似文献   

18.
19.
The half-life of ribosomal protein operon L11 mRNA in vivo was measured during exponential growth by following the kinetics of incorporation of radioactive precursors into L11 mRNA transcribed from multi-copy plasmids. The degree of translational feedback regulation by L1, the L11 operon-specific translational repressor protein, was changed by altering the site on the "L11 mRNA" where L1 interacts. The half-life of the overproduced L11 mRNA increased by about fivefold when translational repression was abolished, while the half-life of mRNA from the spc ribosomal protein operon, which is not translationally regulated by L1, stayed constant. Furthermore, the half-life of L11 operon mRNA carrying an additional mutation in the ribosome binding site that abolishes translation remains short. This indicates that the change in half-life observed during increased gene dosage is due to translational repression by L1 and is probably a consequence of L1 blocking translation of L11 mRNA and not due to some nucleolytic activity mediated by L1.  相似文献   

20.
The Saccharomyces cerevisiae ribosomal protein rp51 is encoded by two interchangeable genes, RP51A and RP51B. We altered the RP51 gene dose by creating deletions of the RP51A or RP51B genes or both. Deletions of both genes led to spore inviability, indicating that rp51 is an essential ribosomal protein. From single deletion studies in haploid cells, we concluded that there was no intergenic dosage compensation at the level of mRNA abundance or mRNA utilization (translational efficiency), although phenotypic analysis had previously indicated a small compensation effect on growth rate. Similarly, deletions in diploid strains indicated that no strong mechanisms exist for intragenic dosage compensation; in all cases, a decreased dose of RP51 genes was characterized by a slow growth phenotype. A decreased dose of RP51 genes also led to insufficient amounts of 40S ribosomal subunits, as evidenced by a dramatic accumulation of excess 60S ribosomal subunits. We conclude that inhibition of 40S synthesis had little or no effect on the synthesis of the 60S subunit components. Addition of extra copies of rp51 genes led to extra rp51 protein synthesis. The additional rp51 protein was rapidly degraded. We propose that rp51 and perhaps many ribosomal proteins are normally oversynthesized, but the unassembled excess is degraded, and that the apparent compensation seen in haploids, i.e., the fact that the growth rate of mutant strains is less depressed than the actual reduction in mRNA, is a consequence of this excess which is spared from proteolysis under this circumstance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号