首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plant-pathogenic fungus Pseudocercosporella herpotrichoides has been successfully transformed by using two different positive selection systems in combination with the Escherichia coli gusA gene. The selectable markers used in this study were the hygromycin B phosphotransferase gene (hph) from E. coli and the gene (bml) for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa. A lower transformation rate was obtained with the bml system than with the hph system. Conversely, cotransformation frequencies, as determined with medium plates containing the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid, were higher with bml than with hph as the selectable marker. The hygromycin-resistant transformants were mitotically stable, and both the selectable gene and gusA were maintained through conidiation. The vector DNA was integrated into the genome, and the number and sites of insertion varied among transformants. Enzyme assays of mycelial extracts showed that beta-glucuronidase activity was highest in transformants with a high gusA copy number. Expression of gusA during growth of the fungus on plants was easily detectable and did not affect pathogenicity. These results form the basis for construction of a versatile and sensitive reporter gene system for P. herpotrichoides.  相似文献   

2.
The plant-pathogenic fungus Pseudocercosporella herpotrichoides has been successfully transformed by using two different positive selection systems in combination with the Escherichia coli gusA gene. The selectable markers used in this study were the hygromycin B phosphotransferase gene (hph) from E. coli and the gene (bml) for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa. A lower transformation rate was obtained with the bml system than with the hph system. Conversely, cotransformation frequencies, as determined with medium plates containing the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid, were higher with bml than with hph as the selectable marker. The hygromycin-resistant transformants were mitotically stable, and both the selectable gene and gusA were maintained through conidiation. The vector DNA was integrated into the genome, and the number and sites of insertion varied among transformants. Enzyme assays of mycelial extracts showed that beta-glucuronidase activity was highest in transformants with a high gusA copy number. Expression of gusA during growth of the fungus on plants was easily detectable and did not affect pathogenicity. These results form the basis for construction of a versatile and sensitive reporter gene system for P. herpotrichoides.  相似文献   

3.
农杆菌介导的玉米遗传转化   总被引:54,自引:0,他引:54  
Several maize inbreds were transformed with Agrobacterium tumefaciens EHA101 (pGIH). Transgenic maize plants were obtained. Frequency of transformation of maize inbred Suyu No. 1 can reach 8.1%. Results of PCR and Southern blot analysis proved that T-DNA was stably integrated into the genome of maize. Staining with X-gluc confirmed the expression of GUS gene in maize cells. The band amplified by inverse PCR showed that the copy number of transgene in three transformants was single. After long term of subculture, some hygromycin resistant calli lost their regeneration ability. Although Southern blot probed the integration of gusA gene in their genome, GUS activity cannot be detected in those calli. Southern blot analysis of HpaII digest DNA showed that transgenic gusA gene was highly methylated.  相似文献   

4.
用带有质粒pGIH(35S-intron-GUS/ Hptr)的根癌农杆菌EHA101转化玉米愈伤组织,获得潮霉素抗性植株,再生性好的苏玉1 图7 Southern blot分析HpaII消化的质粒pGIH 和gusA基因沉默的愈伤组织的总DNA Fig.7 Southern blot analysis of plasmid pGIH(P) and plant genomic DNA of gusA gene si- lence callus(T)digested with HpaII号转化率可以达到8.1%。对转化植株进行GUS染色分析及PCR和Southern杂交检测证明外源基因已经整合,并能够稳定表达。反向PCR分析的三个转化植株,T-DNA插入片段均为单拷贝。部分失去分化能力的抗性愈伤组织,Southern blot分析发现其基因组中有gusA基因插入,但X-gluc染色呈阴性,经HpaII酶切分析发现整合的gusA基因发生了高度甲基化。  相似文献   

5.
6.
目标基因替换是基因功能研究的重要方法, 在生物工程领域广泛应用。为了提高真菌目标基因替换的效率, 以稻瘟病菌为研究对象, 建立了一种以gusA基因为负筛选标记的目标基因替换突变体双筛选体系(GUS-DS)。首先, 检测了78个真菌菌株的内源GUS活性, 发现除3个菌株外均呈阴性。同时, 将gusA基因导入稻瘟病菌、镰刀病菌、炭疽病菌后, 转化子可获得高的GUS活性。表明gusA可用作真菌中的筛选标记。然后, 以gusA为负标记, HPH为正标记, 以过氧化物酶体定位信号受体基因MGPEX5与MGPEX7的替换为例, 建立稻瘟病菌GUS-DS体系。对潮霉素抗性筛选获得的转化子通过GUS活性检测进一步筛选, 呈阴性者为可能突变体。通过PCR与Southern杂交对可能突变体进行验证, 以此评估GUS-DS的筛选效率。结果表明GUS-DS将Δmgpex5与Δmgpex7的筛选效率由原来的65.8%和31.2%分别提高到90.6%和82.8%。另外, 还建立了一种适合于GUS-DS的多重PCR法(M-PCR)用于突变体的验证。通过扩增目标位点的不同区段, 可以有效区分突变体、野生型和随机插入转化子。M-PCR法验证突变体简便、迅速, 可信度与Southern杂交相同。GUS-DS及M-PCR为功能基因组学及生物工程的研究提供了有力的工具。  相似文献   

7.
Functional tagging of regulatory elements in the plant genome   总被引:20,自引:0,他引:20  
  相似文献   

8.
9.
The nor-1 gene in the filamentous fungus Aspergillus parasiticus encodes a ketoreductase involved in aflatoxin biosynthesis. To study environmental influences on nor-1 expression, we generated plasmid pAPGUSNNB containing a nor-1 promoter-beta-glucuronidase (GUS) (encoded by uidA) reporter fusion with niaD (encodes nitrate reductase) as a selectable marker. niaD transformants of A. parasiticus strain NR-1 (niaD) carried pAPGUSNNB integrated predominantly at the nor-1 or niaD locus. Expression of the native nor-1 and nor-1::GUS reporter was compared in transformants grown under aflatoxin-inducing conditions by Northern and Western analyses and by qualitative and quantitative GUS activity assays. The timing and level of nor-1 promoter function with pAPGUSNNB integrated at nor-1 was similar to that observed for the native nor-1 gene. In contrast, nor-1 promoter activity in pAPGUSNNB and a second nor-1::GUS reporter construct, pBNG3.0, was not detectable when integration occurred at niaD. Because niaD-dependent regulation could account for the absence of expression at niaD, a third chromosomal location was analyzed using pAPGUSNP, which contained nor-1::GUS plus pyrG (encodes OMP decarboxylase) as a selectable marker. GUS expression was detectable only when pAPGUSNP integrated at nor-1 and was not detectable at pyrG, even under growth conditions that required pyrG expression. nor-1::GUS is regulated similarly to the native nor-1 gene when it is integrated at its homologous site within the aflatoxin gene cluster but is not expressed at native nor-1 levels at two locations outside of the aflatoxin gene cluster. We conclude that the GUS reporter system can be used effectively to measure nor-1 promoter activity and that nor-1 is subject to position-dependent regulation in the A. parasiticus chromosome.  相似文献   

10.
An heterologous transformation system for the phytopathogenic fungus Fusarium oxysporum has been developed based on the use of the Aspergillus nidulans nitrate reductase gene (niaD). F. oxysporum nia- mutants were easily selected by chlorate resistance. The A. nidulans niaD gene was isolated from a gene library by complementation of an A. nidulans niaD mutant. The cloned gene is capable of transforming F. oxysporum nia- mutants at a frequency of up to ten transformants per microgram of DNA. Southern analysis of the DNA of the F. oxysporum transformants showed that transformation resulted in integration of one or more copies of the vector DNA into the genome.  相似文献   

11.
The β‐glucuronidase (gus) reporter gene was integrated into the phytopathogenic fungus Fusarium oxysporum f. sp. radicis‐lycopersici (FORL) in a co‐transformation experiment using the hygromycin B resistance (hph) gene as selective marker, which resulted in the generation of 10 mitotically stable transformants. One transformant, F30, was selected based on the results of prior detailed characterization of the 10 transformants for growth rate, conidia production and pathogenicity in comparison with the wild‐type strain. A strong positive correlation was found between GUS activity and accumulated biomass of in vitro‐grown fungus and therefore GUS activity was used to study fungal growth quantitatively in two tomato lines. Although a parallel increase in lesion development and GUS activity was noted for both tomato lines, a correlation between the GUS activity and disease progression was not always possible. Interestingly, the levels of GUS activity obtained for the more resistant line were higher than those obtained for the susceptible line, indicating that disease progression in tomato caused by FORL may not be related only to the amount of fungal biomass within the root tissue.  相似文献   

12.
13.
The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.  相似文献   

14.
The natural wild rhizosphere strain P. fluorescens 2137 was marked with the beta-glucuronidase gene gusA. The introduction of this gene influenced the viability of the wild strain, as well as its certain physiological parameters, such as cultural characteristics, biochemical properties, and antagonistic activity against the phytopathogenic fungi Fusarium culmorum, F. oxysporum, F. graminearum, and Verticillum nigrescens. The gusA-marked derivative strains that deviate the least from the wild strain in biological properties can be used to monitor populations of P. fluorescens 2137 cells in the plant rhizosphere.  相似文献   

15.
16.
17.
The steroidal glycoalkaloid alpha-tomatine which is present in tomato (Lycopersicum sculentum) is assumed to protect the plant against phytopathogenic fungi. We have isolated a gene from the fungal pathogen Fusarium oxysporum f. sp. lycopersici that is induced by this glycoalkaloid. This gene, designated panC, encodes a predicted protein with a molecular mass of 41 kDa that shows a high degree of sequence similarity to pantothenate synthetases from yeast, plants and bacteria. Recombinant PanC protein from F. oxysporum has been over-expressed in Escherichia coli and purified to homogeneity. It shows pantothenate synthetase activity in the presence of D-pantoate, beta-alanine and ATP. The panC gene from F. oxysporum functionally complements an E. coli panC mutant, demonstrating that the PanC protein functions in vivo as a pantothenate synthetase. Southern analysis of F. oxysporum genomic DNA from other formae speciales indicates that there is a single copy of the pantothenate syntethase gene in this fungus. The presence of a STRE consensus sequence (CCCCT) in the promoter region of the gene suggests that the induction of panC may be part of a cellular stress response triggered by alpha-tomatine.  相似文献   

18.
We have established an efficient particle-bombardment transformation protocol for the diploid non-apomictic genotype of the warm season forage crop Paspalum notatum (bahiagrass). A vector containing a herbicide resistance gene (bar) together with the GUS reporter gene was used in transformation experiments. The bar gene confers resistance to the herbicide bialaphos. An improved culture system, highly regenerative callus, dense in compact polyembryogenic clusters, was produced on medium with a high CuSO4 content at elevated temperature. Target tissue (360 calli) produced under these conditions yielded 52 rooted plants on herbicide-containing medium, and 22 of these plants were PCR-positive. DNA gel blot analysis revealed a copy number of 1-5 for the GUS gene in different independent transformants. There was no correlation between copy number and GUS activity. While conventional cultures yielded exclusively albino plants on herbicide-containing medium, improved culture conditions for the target tissue resulted in the recovery of 100% green transgenic plants. All green herbicide-resistant regenerants were morphological normal and fertile.  相似文献   

19.
Activity of yeast FLP recombinase in maize and rice protoplasts.   总被引:19,自引:2,他引:19       下载免费PDF全文
We have demonstrated that a yeast FLP/FRT site-specific recombination system functions in maize and rice protoplasts. FLP recombinase activity was monitored by reactivation of beta-glucuronidase (GUS) expression from vectors containing the gusA gene inactivated by insertion of two FRTs (FLP recombination targets) and a 1.31 kb DNA fragment. The stimulation of GUS activity in protoplasts cotransformed with vectors containing FRT inactivated gusA gene and a chimeric FLP gene depended on both the expression of the FLP recombinase and the presence and structure of the FRT sites. The FLP enzyme could mediate inter- and intramolecular recombination in plant protoplasts. These results provide evidence that a yeast recombination system can function efficiently in plant cells, and that its performance can be manipulated by structural modification of the FRT sites.  相似文献   

20.
The yeast ARS-1 element contains a scaffold attachment region (SAR) that we have previously shown can bind to plant nuclear scaffolds in vitro. To test effects on expression, constructs in which a chimeric beta-glucuronidase (GUS) gene was flanked by this element were delivered into tobacco suspension cells by microprojectile bombardment. In stably transformed cell lines, GUS activity averaged 12-fold higher (24-fold on a gene copy basis) for a construct containing two flanking SARs than for a control construct lacking SARs. Expression levels were not proportional to gene copy number, as would have been predicted if the element simply reduced position effect variation. Instead, the element appeared to reduce an inhibitory effect on expression in certain transformants containing multiple gene copies. The effect on expression appears to require chromosomal integration, because SAR constructs were only twofold more active than the controls in transient assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号