首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A battery of in vitro short-term tests revealing different genetic end-points was set up in order to study surface-water genotoxicity after disinfection with different biocides: sodium hypochlorite (NaClO), chlorine dioxide (ClO(2)) and peracetic acid (PAA). The surface water both before and after disinfection was concentrated by adsorption on C(18) silica cartridges and the concentrates containing non-volatile organics were divided into different portions for chemical analyses and biological assays. The following in vitro tests were conducted on the water concentrates dissolved in DMSO: the Salmonella mutagenicity assay with S. typhimurium strains TA98 and TA100; the SOS Chromotest with Escherichia coli, the Microtox and Mutatox assays with Vibrio fischeri; and gene conversion, point mutation and mitochondrial DNA mutability assays with D7 diploid Saccharomices cerevisiae strain. The results show that the SOS Chromotest and the yeast assays are highly sensitive in detecting genotoxicity. The surface-water extracts were very often toxic to most of the test organisms considered, partially masking their potential mutagenic activity. Therefore, the assays with E. coli and with S. cerevisiae are more likely to show a mutagenic effect because these organisms are generally less sensitive to most toxic compounds. Among the tested disinfectants, NaClO and ClO(2) increased water genotoxicity, whereas PAA was able to slightly reduce raw water activity. However, because the organic compounds in the lake water varied with the season of the year, the disinfection processes, at times, both increased and decreased the raw water activity.  相似文献   

2.
This research examined the quality of water-before and after distribution-of four drinking-water production plants located in Northern Italy, two of which collected water from local aquifers and two from the River Po. A battery of genotoxicity assays for monitoring drinking-water was performed to assess the quality of the water produced by the treatment plants under study. Three different sampling stations were selected at each plant, one right at the outlet of the treatment plant and two along with the distribution pipelines. Raw river water was also sampled and analysed as a control. The water samples (500 l) were concentrated on silica C18 cartridges and the extracts were tested in in vitro mutagenicity assays (Salmonella/microsome assay with strains TA 98 and TA 100; SOS Chromotest with Escherichia coli strain PQ37); gene conversion, point mutation and mitochondrial DNA mutability assays with the diploid Saccharomyces cerevisiae strain D7 and a toxicity test using the bioluminescent bacterium Vibrio fischeri (Microtox). The Microtox test and the mitochondrial DNA mutability assay showed the greatest sensitivity towards toxic or mutagenic substances in the water extracts considered. The results show that this battery of short-term tests is applicable in the routine monitoring of drinking-water quality before and after distribution.  相似文献   

3.
The ecotoxicological effects of four bioslurry reactors treating 2,4,6-trinitotoluene (TNT)- and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX)-spiked soil were evaluated. A control bioslurry reactor was used to assess the endogenous toxicity of the bioslurry operation conditions. A battery of ecotoxicity tests was used: Microtox, green algae growth inhibition, bacterial genotoxicity and mutagenicity, and earthworm mortality and growth inhibition. Bioslurry soluble and solid phases were separated by centrifugation in order to identify toxicity and possible toxicants associated with each phase. Microtox toxicity values were initially very high in both bioslurry reactors spiked with TNT, in relation with TNT concentration. Initial toxicity was also detected by algal growth inhibition, earthworm lethality, genotoxicity and mutagenicity tests. An endogenous toxicity was detected in the control bioreactor using the Microtox and the SOS Chromotest. The soluble phase of the control bioslurry was genotoxic, suggesting that some potentially genotoxic agents were induced in the bioslurry samples. At the end of the bioremediation treatment, data showed that toxicity was reduced using all of the bioassays, except for earthworm lethality and growth inhibition tests in both RDX-spiked bioslurries. This study demonstrates the usefulness of a battery of toxicity tests to monitor bioremediation processes.  相似文献   

4.
A total of 23 chemicals--biphenyls, phenanthrenequinones and fluorenones--were tested for mutagenicity towards Salmonella typhimurium strains TA1538, TA1535 and TA98. SOS-inducing activity of the same chemicals was studied in terms of the SOS-inducing potency in Escherichia coli PQ37, using an automated instrument controlled by a dedicated computer program for the SOS Chromotest. Of the 23 chemicals studied 14 induced His+ revertants in S. typhimurium TA1538 hisD305 (-1 frameshift); none induced His+ reversions in TA1535 (base-pair substitution). The mutagenicity of the chemicals in S. typhimurium TA98 (pKM 101) was lower than in TA1538. There was a close correlation between mutagenicity and SOS-inducing activity of fluorenones and phenanthrenequinones. None of the biphenyls tested induced SOS response and this property does not depend upon the mutagenic activity of the chemicals. SOS Chromotest is particularly valid in detecting chemicals which give rise to base-pair substitutions through SOS induction. If positive results are obtained, the Salmonella assay may be omitted. However, this test cannot replace the Ames test especially for the primary screening of mutagenicity of chemicals with unknown structure.  相似文献   

5.
The study is aimed at evaluating the genotoxicity of contaminated soils using two bacterial mutagenicity assays — the Ames test and the SOS Chromotest. Initially, attention is directed at the method of extraction of soil samples by organic solvents. The detection of mutagenicity was dependent on the type of organic solvent. Dichloromethane (DCM) proved to be a better extraction agent than acetone because it is more effective for extracting mutagenic compounds. In the second part of our study, the possibilities of using bacterial mutagenicity assays for monitoring the course and effectiveness of bio-remediation of contaminated soils were ascertained. The results of an evaluation of the genotoxicity of a residue of polycyclic aromatic hydrocarbons (PAHs) that decompose with difficulty showed that a decrease in the concentration of detectable components need not always correspond to a total decrease of the mutagenic effect. Contaminants inducing SOS repair were degraded relatively quickly in soils, whereas it was found that mutagens inducing frameshift mutations persisted in samples.  相似文献   

6.
Toxaphene (CAS No. 800-35-2) is a complex mixture of several hundred components that was used worldwide primarily as an agricultural pesticide with insecticide effects in the second half of the 20th century. In vitro investigations of the genotoxicity and mutagenicity of toxaphene were generally described in the literature, but they provided somewhat equivocal results. We re-evaluated the genotoxicity of technical toxaphene in two prokaryotic systems. The SOS Chromotest showed high sensitivity to toxaphene: three concentrations (40, 20 and 10 mg/l) were clearly positive and the dose-response effect was evident. In the umuC assay, a dose-dependent increase in genotoxic activity was observed at toxaphene concentrations from 2.5 to 40.0 mg/l, but these results were found to be not significant. The genotoxicity of toxaphene and its photodegradation products after UV-irradiation (3-6-9 h) at concentrations ranging from 7.5 to 60.0 mg/l was also examined in this study. An irradiated solution of technical toxaphene after 3 h showed no significant evidence of bacterial growth inhibition. However, exposure of Salmonella to 6 h UV-irradiated toxaphene showed a toxic effect compared with the negative control. After 9 h irradiation, a decrease of bacterial growth was observed. Activity of beta-galactosidase in the presence of a toxaphene solution was significantly increased after 6 and 9 h irradiation, reaching values that were 2.4- and 3.1-fold higher, respectively, than the control, which exceeded the criteria of significant genotoxicity. These results show that while technical toxaphene is a weak, direct-acting mutagen in some bacterial tests, a dose-dependent toxicity and genotoxicity of its photoproducts could be conclusively demonstrated by the umuC test.  相似文献   

7.
The mutagenic hazards of aquatic sediments: a review   总被引:2,自引:0,他引:2  
Chen G  White PA 《Mutation research》2004,567(2-3):151-225
Sediments are the sink for particle-sorbed contaminants in aquatic systems and can serve as a reservoir of toxic contaminants that continually threaten the health and viability of aquatic biota. This work is a comprehensive review of published studies that investigated the genotoxicity of sediments in rivers, lakes and marine habitats. The Salmonella mutagenicity test is the most frequently used assay and accounts for 41.1% of the available data. The Salmonella data revealed mutagenic potency values for sediment extracts (in revertants per gram dry weight) that spans over seven orders of magnitude from not detectable to highly potent (10(5) rev/g). Analyses of the Salmonella data (n=510) showed significant differences between rural, urban/industrial, and heavily contaminated (e.g., dump) sites assessed using TA98 and TA100 with S9 activation. Additional analyses showed a significant positive correlation between Salmonella mutagenic potency (TA98 and TA100 with S9) and PAH contamination (r2=0.19-0.68). The second and third most commonly used assays for the analysis of sediments and sediment extracts are the SOS Chromotest (9.2%) and the Mutatox assays (7.8%), respectively. These assays are frequently used for rapid initial screening of collected samples. A variety of other in vitro endpoints employing cultured fish and mammalian cells have been used to investigate sediment genotoxic activity. Endpoints investigated include sister chromatid exchange frequency, micronucleus frequency, chromosome aberration frequency, gene mutation at tk and hprt loci, unscheduled DNA synthesis, DNA adduct frequency, and DNA strand break frequency. More complex in vivo assays have documented a wide range of effects including neoplasms and preneoplastic lesions in fish and invertebrate exposed ex situ. Although costly and time consuming, these assays have provided definitive evidence linking sediment contamination and a variety of genotoxic and carcinogenic effects observed in situ.  相似文献   

8.
The SOS Chromotest is a simple bacterial colorimetric assay for genotoxicity. It is based on the measure of the induction of sfiA, a gene controlled by the general repressor of the SOS system in E. coli. Expression of sfiA is monitored by means of a gene fusion with lacZ, the structural gene for beta-galactosidase. We have examined 83 compounds of various chemical classes with the SOS Chromotest using a standard procedure. Comparison of the results with those obtained in the Mutatest (the Ames test) showed that most (90%) of the mutagenic compounds were also SOS inducers. For these compounds a quantitative correlation was observed between the mutagenic potency and the SOS-inducing potency (SOSIP). The case of the 10% remaining compounds giving conflicting results in the two tests is discussed. Sensitivity, specificity and accuracy for carcinogenicity prediction have been evaluated for the SOS Chromotest and the Mutatest using 73 chemicals for which carcinogenicity data were available. In spite of some differences, similar results were obtained in the two tests. The present data indicate that the SOS Chromotest has many practical advantages and may be used as a primary screening tool or as part of a battery of short-term tests for carcinogens.  相似文献   

9.
Yim SH  Hee SS 《Mutation research》2001,492(1-2):13-27
The first aim was to compare the genotoxicities of two tobacco-specific nitrosamines (TSNA), 4-(methylnitrosamino)-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) in two types of tests, the Salmonella reverse mutation assay (250-2000 microg per plate) and the Mutatox test (up to 1000 microg/ml) using dark mutant M-169 of Vibrio fischeri. The second aim was to assess the effects of single other tobacco chemicals and metabolites (nicotine (NIC), cotinine (COT), trans-3-hydroxycotinine (3HC), cotinine-N-oxide (CNO) and nicotine-N-oxide (NNO)) on the mutagenic responses at relative concentrations observed physiologically. The Salmonella strains were TA100, TA7004, TA7005, and TA7006, all showing missense backmutations that are characteristic of the TSNA. NNN was a direct mutagen to strains TA100, TA7004, and in the Mutatox test, and was not mutagenic in the presence of rat or hamster S9. NNK was mutagenic only in strain TA7004 with rat and hamster S9, but not in TA100, but was directly mutagenic in the Mutatox test. While all the other tobacco chemicals were not mutagenic alone to strains TA100 and TA7004 in the presence and absence of rat or hamster S9, the Mutatox test produced direct mutagenicity for COT, 3HC, and NNO, but not CNO. The latter was mutagenic in the Mutatox test with rat or hamster S9, but only rat S9 was effective for COT, NNO and 3HC. Inhibitory potentiations of NNN by NIC and COT were observed on strain TA7004, and by NIC on strain TA100. There were no interactions on NNK in the presence of S9 for strain TA7004 or TA100. In contrast, a complex inhibition and enhancement behavior occurred in the Mutatox test for each interaction, but no effects were observed for CNO on NNK without S9, and few for NIC on NNK with hamster S9. Compounds which showed no activity alone modulated the genotoxicity of two potent TSNAs in both types of tests.  相似文献   

10.
An evaluation of the genotoxic potential of different wastewaters collected in the Rouen area was performed with the SOS chromotest (on Escherichia coli PQ37) and the Salmonella fluctuation test on Salmonella typhimurium strains TA98, TA100 and TA102 with or without metabolic activation. The samples were taken during two 1-week periods, one in January and one in April 2003. Six sites were selected for wastewater sampling in order to allow a comparative study between an area of mixed discharge (industrial, hospital and domestic) and an area of primarily domestic discharge. Out of a total of 71 daytime samples tested, 46 (65%) were positive in at least one assay: 22 samples out of 33 in January (67%), and 24 samples out of 38 in April (63%). The two genotoxicity tests have different sensitivities. Indeed, the Salmonella fluctuation test allowed the detection of 56% of the samples as genotoxic in January (18 out of 33), and 63% in April (24 out of 38) while the SOS chromotest allowed the detection of 18% of the samples as genotoxic, whatever the sampling period. The samples collected in domestic wastewater are at least as genotoxic as the samples collected in mixed wastewater. The possible source of the detected genotoxicity (industrial, hospital or domestic) is discussed. The results of this study show that the different types of wastewaters present a genotoxic risk. Additional studies should be undertaken in the analytical field in order to try to identify and quantify the compounds responsible for the genotoxicity. This difficult task will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of the wastewater.  相似文献   

11.

Concern on the toxicity of final wastewater generated by the petroleum refining industry has increased in recent years due to the potential health threats associated with their release into the waterways. This study determined the mutagenic and genotoxic potential of petroleum refinery wastewater and a receiving river using the Ames fluctuation test on Salmonella typhimurium strains TA100 and TA98, SOS chromotest on Escherichia coli PQ37, and piscine peripheral micronucleus (MN) assay. Analyses of the physicochemical parameters, heavy metal, and organic contents of the samples were also performed. Ames test result showed that the two tested samples were mutagenic with TA100 strain as the more responsive strain for both the refinery wastewater and the river sample in terms of the calculated mutagenic index. A similar result was obtained in the SOS chromotest; however, the E. coli PQ37 system recorded a slightly higher sensitivity for detecting genotoxins than the Salmonella assay in the two samples. MN data showed induction of a concentration-dependent significant (p < 0.05) increase in the frequency of MN by both samples when compared with the negative control. Generally, the refinery wastewater induced the highest mutagenicity and genotoxicity compared to the river sample in the three assays used. Haemoglobin, platelets, red blood cells, mean corpuscular volume, total white blood cells, heterophils, haematocrit, and eosinophils reduced significantly with increased lymphocytes, basophils, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in fishes exposed to both samples. Total petroleum hydrocarbon, benzene, toluene, phenol index, polycyclic aromatic hydrocarbons, cadmium, mercury, nickel, lead, and vanadium contents analysed in the samples were believed to be responsible for the observed genotoxicity and mutagenicity. The findings of this study revealed that petroleum refinery wastewater is a potential mutagenic and genotoxic risk to the environment.

  相似文献   

12.
An evaluation of the genotoxic potential of different wastewaters collected in the Rouen area was performed with the SOS chromotest (on Escherichia coli PQ37) and the Salmonella fluctuation test on Salmonella typhimurium strains TA98, TA100 and TA102 with or without metabolic activation. The samples were taken during two 1-week periods, one in January and one in April 2003. Six sites were selected for wastewater sampling in order to allow a comparative study between an area of mixed discharge (industrial, hospital and domestic) and an area of primarily domestic discharge.Out of a total of 71 daytime samples tested, 46 (65%) were positive in at least one assay: 22 samples out of 33 in January (67%), and 24 samples out of 38 in April (63%). The two genotoxicity tests have different sensitivities. Indeed, the Salmonella fluctuation test allowed the detection of 56% of the samples as genotoxic in January (18 out of 33), and 63% in April (24 out of 38) while the SOS chromotest allowed the detection of 18% of the samples as genotoxic, whatever the sampling period. The samples collected in domestic wastewater are at least as genotoxic as the samples collected in mixed wastewater. The possible source of the detected genotoxicity (industrial, hospital or domestic) is discussed.The results of this study show that the different types of wastewaters present a genotoxic risk. Additional studies should be undertaken in the analytical field in order to try to identify and quantify the compounds responsible for the genotoxicity. This difficult task will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of the wastewater.  相似文献   

13.
Toxaphene (CAS No. 800-35-2) is a complex mixture of several hundred components that was used worldwide primarily as an agricultural pesticide with insecticide effects in the second half of the 20th century. In vitro investigations of the genotoxicity and mutagenicity of toxaphene were generally described in the literature, but they provided somewhat equivocal results. We re-evaluated the genotoxicity of technical toxaphene in two prokaryotic systems. The SOS Chromotest showed high sensitivity to toxaphene: three concentrations (40, 20 and 10 mg/l) were clearly positive and the dose–response effect was evident. In the umuC assay, a dose-dependent increase in genotoxic activity was observed at toxaphene concentrations from 2.5 to 40.0 mg/l, but these results were found to be not significant. The genotoxicity of toxaphene and its photodegradation products after UV-irradiation (3–6–9 h) at concentrations ranging from 7.5 to 60.0 mg/l was also examined in this study. An irradiated solution of technical toxaphene after 3 h showed no significant evidence of bacterial growth inhibition. However, exposure of Salmonella to 6 h UV-irradiated toxaphene showed a toxic effect compared with the negative control. After 9 h irradiation, a decrease of bacterial growth was observed. Activity of β-galactosidase in the presence of a toxaphene solution was significantly increased after 6 and 9 h irradiation, reaching values that were 2.4- and 3.1-fold higher, respectively, than the control, which exceeded the criteria of significant genotoxicity. These results show that while technical toxaphene is a weak, direct-acting mutagen in some bacterial tests, a dose-dependent toxicity and genotoxicity of its photoproducts could be conclusively demonstrated by the umuC test.  相似文献   

14.
The genotoxicity of 5 compounds: 2 fulvic acids, a trade humic acid, a synthetic humic material (SHM), and 2,5-dihydroxybenzoic acid, was assessed after chlorination, by means of the SOS Chromotest for tester strain E. coli PQ 37 without metabolic activation. Chlorination was carried out for humic material concentration of 0.5 mg total organic carbon per liter, and chlorine concentrations in the range of 0.1-2.0 chlorine equivalents per mole of carbon. Among all the considered criteria that can account for potent toxicity: chemical degradation determined by the UV absorption decrease, chlorine consumption, average molecular weight, only the polymerization index (O.D. 665 nm/O.D. 465 nm) can be related to the genotoxicity of humic samples. This latter criterion appears a possible predictor of genotoxic potency, revealed subsequent to the aqueous chlorination of humic materials. Looking at the various genotoxic activities of the tested compounds, SHM can be considered a better model of natural humic materials than the trade humic acid.  相似文献   

15.
We performed a genotoxicity investigation of extremely low-frequency (ELF) magnetic fields (MFs, 50 Hz, 100 and 500 μT, 1 and 2 h exposure) alone and in combination with known chemical mutagens using the VITOTOX test. This test is a very sensitive reporter assay of Salmonella typhimurium bacteria based on the SOS response. Our study showed that ELF-MFs do not induce SOS-based mutagenicity in S. typhimurium bacteria and do not show any synergetic effect when combined with chemical mutagens.  相似文献   

16.
Echinodorus macrophyllus, commonly known as chapéu-de-couro, is a medicinal plant used in folk medicine to treat inflammation and rheumatic diseases. In this work, we used short-term bacterial assays based on the induction of SOS functions to examine the genotoxicity and mutagenicity of an aqueous extract of E. macrophyllus leaves. Whole extract and an ethyl acetate fraction showed similar genotoxicity and caused an ~70-fold increase in lysogenic induction. The extract also gave a positive result in the SOS chromotest with an increase of 12-fold in β-Galactosidase enzymatic units. There was a strong trend towards base substitutions and frameshifts at purine sites in the mutations induced by the extract in Escherichia coli (CC103 and CC104 strains) and Salmonella typhimurium test strains (22-fold increase in histidine revertants in TA98 strain). Since reactive oxygen species may be implicated in aging process and in degenerative diseases, we used antioxidant compounds as catalase, thiourea and dipyridyl in the lysogenic induction test. All this compounds were able to reduce the induction factor observed in the treatment with chapéu-de-couro, thus suggesting that the genotoxicity and mutagenicity were attributable to the production of reactive oxygen species that targeted DNA purines.  相似文献   

17.
Two in vitro tests (Ames test and SOS chromotest), one for bacterial mutagenicity and one for primary DNA damage, were assayed to determine the genotoxic activity of 6 pesticides (atrazine, captafol, captan, chlorpyrifosmethyl, molinate and tetrachlorvinphos). Assays were carried out both in the absence and presence of S9 fractions of liver homogenate from rat (Sprague–Dawley) pretreated with Aroclor 1254. Captan and captafol were genotoxic on both the Ames test and the SOS chromotest. Comparisons with mutagenesis data in Salmonella indicated that the SOS assay detected as genotoxic the pesticides that were mutagenic on the Salmonella test. Non-genotoxic effects were not detected in vitro either in the Salmonella/microsome assay nor in the SOS chromotest when bacterial tester strains were exposed to atrazine, molinate, chlorpyrifosmethyl and tetrachlorvinphos in the absence or presence of S9 mix.  相似文献   

18.
The antioxidant activity, mutagenicity, and genotoxicity of bis(3-(3,5-di-tret-butyl-4-hydroxyphenyl)propyl)sulfide (thiophane) were studied using bacterial tests. The results of both an Ames test and SOS chromotest, as well as those studying the survival of E. coli cells deficient in enzymes responsible for the repair of DNA oxidative damage, testify to the fact that thiophane is not mutagenic and genotoxic, and it protects Salmonella typhimurium cells better than the well-known antioxidant trolox.  相似文献   

19.
The genotoxic activities of refined smoke flavor (RSF) produced in Poland and used in food processing were investigated in 2 bacterial short-term tests. Its mutagenic activity was examined in the Salmonella/histidine plate assay and its SOS-inducing capacity in the SOS Chromotest both without and with 'activation' by a rat liver homogenate. No genotoxic activity was detected using these 2 bacterial tests.  相似文献   

20.
The combination of mutagenicity tests and selective extraction methodologies can be useful to indicate the possible classes of genotoxic organic contaminants in water samples. Treated and source water samples from two sites were analyzed: a river under the influence of an azo dye-processing plant discharge and a reservoir not directly impacted with industrial discharges, but contaminated with untreated domestic sewage. Organic extraction was performed in columns packed with XAD4 resin, that adsorbs a broad class of mutagenic compounds like polycyclic aromatic hydrocarbons (PAHs), arylamines, nitrocompounds, quinolines, antraquinones, etc., including the halogenated disinfection by-products; and with blue rayon that selectively adsorbs polycyclic planar structures. The organic extracts were tested for mutagenicity with the Salmonella assay using TA98 and TA100 strains and the potencies were compared. A protocol for cleaning the blue rayon fibers was developed and the efficiency of the reused fibers was analyzed with spiked samples. For the river water samples under the influence of the azo-type dye-processing plant, the mutagenicity was much higher for both blue rayon and XAD4 extracts when compared to the water from the reservoir not directly impacted with industrial discharges. For the drinking water samples, although both sites showed mutagenic responses with XAD4, only samples from the site under the influence of the industrial discharge showed mutagenic activity with the blue rayon extraction, suggesting the presence of polycyclic compounds in those samples. As expected, negative results were found with the blue rayon extracts of the drinking water collected from the reservoir not contaminated with industrial discharges. In this case, it appears that using the blue rayon to extract drinking water samples and comparing the results with the XAD resin extracts we were able to distinguish the mutagenicity caused by industrial contaminants from the halogenated disinfection by-products generated during water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号