首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoflurane mimics the cardioprotective effect of acute ischemic preconditioning with an acute memory phase. We determined whether isoflurane can induce delayed cardioprotection, the involvement of ATP-sensitive potassium (K(ATP)) channels, and cellular location of the channels. Neonatal New Zealand White rabbits at 7-10 days of age (n = 5-16/group) were exposed to 1% isoflurane-100% oxygen for 2 h. Hearts exposed 2 h to 100% oxygen served as untreated controls. Twenty-four hours later resistance to myocardial ischemia was determined using an isolated perfused heart model. Isoflurane significantly reduced infarct size/area at risk (means +/- SD) by 50% (10 +/- 5%) versus untreated controls (20 +/- 6%). Isoflurane increased recovery of preischemic left ventricular developed pressure by 28% (69 +/- 4%) versus untreated controls (54 +/- 6%). The mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD) completely (55 +/- 3%) and the sarcolemmal K(ATP) channel blocker HMR 1098 partially (62 +/- 3%) attenuated the cardioprotective effects of isoflurane. The combination of 5-HD and HMR-1098 completely abolished the cardioprotective effect of isoflurane (56 +/- 5%). We conclude that both mitochondrial and sarcolemmal K(ATP) channels contribute to isoflurane-induced delayed cardioprotection.  相似文献   

2.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

3.
The opioid antagonist naloxone abolishes infarct limitation by myocardial ischemic preconditioning, suggesting that one or more endogenous opioid peptides can mediate cardiac protection against ischemic damage. We tested the hypothesis that the naturally occurring opioid peptide Met5-enkephalin (ME) modulates myocardial infarct size in vivo. Experiments were conducted in barbiturate-anesthetized open-chest rabbits subjected to regional myocardial ischemia-reperfusion. ME was administered via osmotic minipump for 24 h. Infarct size was assessed with tetrazolium and is expressed as a percentage of the area at risk. Exogenous ME reduced the amount of the risk zone infarcted by approximately 60% compared with saline-treated controls. ME-induced protection was sensitive to opioid receptor blockade with naloxone [NAL 50 +/- 2% vs. ME + NAL 39 +/- 3%, P = not significant (NS)] and also to blockade of sarcolemmal and mitochondrial ATP-sensitive K+ (KATP) channels [5-hydroxydecanoate (5-HD) 33 +/- 3% vs. ME + 5-HD 43 +/- 8%, P = NS; and HMR-1098 60 +/- 3% vs. ME + HMR-1098 54 +/- 7%, P = NS]. We conclude that ME limits ischemic injury in vivo by an opioid receptor-mediated mechanism that involves both sarcolemmal and mitochondrial KATP channels.  相似文献   

4.
We examined the role of the sarcolemmal and mitochondrial K(ATP) channels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 +/- 1%) versus control (56 +/- 1%). The sarcolemmal K(ATP) channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial K(ATP) channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 +/- 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 +/- 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 +/- 0.30 micromol x min(-1) x mg mitochondrial protein(-1). Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 +/- 0.06 micromol x min(-1) x mg mitochondrial protein(-1). IPC significantly increased ATP synthesis to 1.86 +/- 0.23 micromol x min(-1) x mg mitochondrial protein(-1). However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 +/- 0.15 micromol x min(-1) x mg mitochondrial protein(-1)). These data are consistent with the notion that inhibition of mitochondrial K(ATP) channels attenuates IPC by reducing IPC-induced protection of mitochondrial function.  相似文献   

5.
Previous studies in our laboratory suggest that an acute inhibition of glycogen synthase kinase 3 (GSK3) by SB-216763 (SB21) is cardioprotective when administered just before reperfusion. However, it is unknown whether the GSK inhibitor SB21 administered 24 h before ischemia is cardioprotective and whether the mechanism involves ATP-sensitive potassium (K(ATP)) channels and the mitochondrial permeability transition pore (MPTP). Male Sprague-Dawley rats were administered the GSK inhibitor SB21 (0.6 mg/kg) or vehicle 24 h before ischemia. Subsequently, the rats were acutely anesthetized with Inactin and underwent 30 min of ischemia and 2 h of reperfusion followed by infarct size determination. Subsets of rats received either the sarcolemmal K(ATP) channel blocker HMR-1098 (6 mg/kg), the mitochondrial K(ATP) channel blocker 5-hydroxydecanoic acid (5-HD; 10 mg/kg), or the MPTP opener atractyloside (5 mg/kg) either 5 min before SB21 administration or 5 min before reperfusion 24 h later. The infarct size was reduced in SB21 compared with vehicle (44 +/- 2% vs. 61 +/- 2%, respectively; P < 0.01). 5-HD administered either before SB21 treatment or 5 min before reperfusion the following day abrogated SB21-induced protection (54 +/- 4% and 61 +/- 2%, respectively). HMR-1098 did not affect the SB21-induced infarct size reduction when administered before the SB21 treatment (43 +/- 1%); however, HMR-1098 partially abrogated the SB21-induced infarct size reduction when administered just before reperfusion 24 h later (52 +/- 1%). The MPTP opening either before SB21 administration or 5 min before reperfusion abrogated the infarct size reduction produced by SB21 (61 +/- 2% and 62 +/- 2%, respectively). Hence, GSK inhibition reduces infarct size when given 24 h before the administration via the opening K(ATP) channels and MPTP closure.  相似文献   

6.
Although protein kinase C (PKC) and phosphatidylinositol 3 (PI3)-kinase are implicated in cardioprotective signal transduction mediated by ischemic preconditioning, their role in pharmacological preconditioning (PPC) has not been determined. Cultured neonatal rat cardiomyocytes (CMCs) were subjected to simulated ischemia for 2 h followed by 15 min of reoxygenation. PPC of CMCs consisted of administration of 50 microM adenosine, 50 microM diazoxide, and 50 microM S-nitroso-N-acetylpenicillamine (SNAP), each alone or in combination, for 15 min followed by 30 min of washout before simulated ischemia. Although PKC-epsilon and PI3-kinase were significantly activated during treatment with adenosine, activation of these kinases dissipated after washout. In contrast, PPC combined with adenosine, diazoxide, and SNAP elicited sustained activation of PKC-epsilon and PI-3 kinase after washout. The combined-PPC, but not the single-PPC, protocol conferred antiapoptotic and antinecrotic effects after reoxygenation. The PKC inhibitor chelerythrine (5 microM) or the PI3-kinase inhibitor LY-294002 (10 microM) given during the washout period partially blocked the activation of PKC-epsilon and PI3-kinase mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely inhibited activation of PKC-epsilon and PI3-kinase. Chelerythrine or LY-294002 partially blocked antiapoptotic and antinecrotic effects mediated by the combined-PPC protocol, whereas combined addition of chelerythrine and LY-294002 completely abrogated antiapoptotic and antinecrotic effects. These results suggest that the combined-PPC protocol confers cardioprotective memory through sustained and interdependent activation of PKC and PI3-kinase.  相似文献   

7.
B-type natriuretic peptide (BNP) has been reported to be released from the myocardium during ischemia. We hypothesized that BNP mediates cardioprotection during ischemia-reperfusion and examined whether exogenous BNP limits myocardial infarction and the potential role of ATP-sensitive potassium (K(ATP)) channel opening. Langendorff-perfused rat hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. The control infarct-to-risk ratio was 44.8 +/- 4.4% (means +/- SE). BNP perfused 10 min before ischemia limited infarct size in a concentration-dependent manner, with maximal protection observed at 10(-8) M (infarct-to-risk ratio: 20.1 +/- 5.2%, P < 0.01 vs. control), associated with a 2.5-fold elevation of myocardial cGMP above the control value. To examine the role of K(ATP) channel opening, glibenclamide (10(-6) M), 5-hydroxydecanoate (5-HD; 10(-4) M), or HMR-1098 (10(-5) M) was coperfused with BNP (10(-8) M). Protection afforded by BNP was abolished by glibenclamide or 5-HD but not by HMR-1098, suggesting the involvement of putative mitochondrial but not sarcolemmal K(ATP) channel opening. We conclude that natriuretic peptide/cGMP/K(ATP) channel signaling may constitute an important injury-limiting mechanism in myocardium.  相似文献   

8.
To examine the receptor specificity and the mechanism of opioid peptide-induced protection, we examined freshly isolated adult rabbit cardiomyocytes subjected to simulated ischemia. Cell death as a function of time was assessed by trypan blue permeability. Dynorphin B (DynB) and Met5-enkephalin (ME) limitation of cell death (expressed as area under the curve) was sensitive to blockade by naltrindole (NTI, a delta-selective antagonist) and 5'-guanidinyl-17-(cyclopropylmethyl)-6,7-dehydro-4,5alpha-epoxy-3,14-dihydroxy-6,7-2',3'-indolomorphinan (GNTI dihydrochloride, a kappa-selective antagonist): 85.7 +/- 2.7 and 142.9 +/- 2.7 with DynB and DynB + NTI, respectively (P < 0.001), 94.1 +/- 4.2 and 164.5 +/- 7.3 with DynB and DynB + GNTI, respectively (P < 0.001), 111.9 +/- 7.0 and 192.1 +/- 6.4 with ME and ME + NTI, respectively (P < 0.001), and 120.2 +/- 4.3 and 170.0 +/- 3.3 with ME and ME + GNTI, respectively (P < 0.001). Blockade of ATP-sensitive K+ channels eliminated DynB- and ME-induced protection: 189.6 +/- 5.4 and 139.0 +/- 5.4 for control and ME, respectively (P < 0.001), and 210 +/- 5.9 and 195 +/- 6.1 for 5-HD and ME + 5-HD, respectively (P < 0.001); 136.0 +/- 5.7 and 63.4 +/- 5.4 for control and ME, respectively (P < 0.001), and 144.6 +/- 4.5 and 114.6 +/- 7.7 for HMR-1098 and ME + HMR-1098, respectively (P < 0.01); 189.6 +/- 5.4 and 139.0 +/- 5.4 for control and ME, respectively (P < 0.001), and 210 +/- 5.9 and 195 +/- 6.1 for 5-HD and ME + 5-HD, respectively (P < 0.001); and 136.0 +/- 5.7 and 63.4 +/- 5.4 for control and ME, respectively (P < 0.001), and 144.6 +/- 4.5 and 114.6 +/- 7.7 for HMR-1098 and ME + HMR-1098, respectively (P < 0.01). We conclude that opioid peptide-induced cardioprotection is mediated by delta- and kappa-receptors and involves sarcolemmal and mitochondrial ATP-sensitive K+ channels.  相似文献   

9.
We examined whether cGMP-dependent protein kinase (PKG) and mitochondrial ATP-sensitive potassium (K(ATP)) channels are involved in S-nitroso-N-acetyl penicillamine (SNAP)-induced reactive oxygen species (ROS) generation. SNAP significantly increased ROS generation in cardiomyocytes. This increase was suppressed by both 5-hydroxydecanoate (5-HD) and glibenclamide. Direct opening of mitochondrial K(ATP) channels with diazoxide led to ROS generation. The increased ROS generation was reversed by N-(2-mercaptopropionyl)glycine (MPG), a scavenger of ROS. Myxothiazol partially suppressed the ROS generation. KT-5823, an inhibitor of PKG, prevented ROS generation, indicating that PKG is required for ROS generation. In addition, 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), an activator of PKG, induced ROS generation. The effect of 8-BrcGMP was reversed by either 5-HD or MPG. YC-1, an activator of guanylyl cyclase, also increased ROS production, which was reversed by 5-HD. Neither LY-294002 nor wortmannin, the inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), affected SNAP's action. In a whole heart study, SNAP significantly reduced infarct size. The anti-infarct effect of SNAP was abrogated by either MPG or 5-HD. This effect was also blocked by PD-98059, an ERK inhibitor, but not by LY-294002. A Western blotting study showed that SNAP significantly enhanced phosphorylation of ERK, which was reversed by MPG. These results suggest that SNAP-induced ROS generation is mediated by activation of PKG and mitochondrial K(ATP) channels and that opening of mitochondrial K(ATP) channels is the downstream event of PKG activation. ROS and mitochondrial K(ATP) channels participate in the anti-infarct effect of SNAP. Moreover, phosphorylation of ERK is the downstream signaling event of ROS and plays a role in the cardioprotection of SNAP.  相似文献   

10.
Previous work from our laboratory has shown that the sarcolemmal K(ATP) channel (sK(ATP)) is required as a trigger for delayed cardioprotection upon exogenous opioid administration. We also established that the mitochondrial K(ATP) (mK(ATP)) channel is not required for triggering delayed delta-opioid-induced infarct size reduction. Because mechanistic differences have been found among delta-opioids and that due to ischemic preconditioning (IPC), we determined whether the triggering mechanism of delayed IPC-induced infarct size reduction involves either the sK(ATP) or mK(ATP). Male Sprague-Dawley rats received either sham surgery or IPC (3- to 5-min cycles of ischemia and reperfusion) 24 h before being subjected to 30 min of ischemia and 2 h of reperfusion. Infarct size was determined and expressed as a percentage of the area at risk, with significance compared with sham reported at P 相似文献   

11.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

12.
The present study was conducted to determine whether the infarct sparing effect of short-term exercise is dependent on the operation of the myocardial sarcolemmal ATP-sensitive K(+) (K(ATP)) channel. Adult male and female Sprague-Dawley rats were exercised on a motorized treadmill for 5 days. Twenty-four hours following the training or sedentary period, hearts were isolated and exposed to 1 h of regional ischemia followed by 2 h of reperfusion on a modified Langendorf apparatus in the presence or absence of the sarcolemmal K(ATP) channel antagonist HMR-1098 (30 microM). Following the ischemia-reperfusion protocol, infarct size was determined as a percentage of the total ischemic zone at risk (ZAR). Short-term exercise reduced infarct size by 24% in males (32 +/- 2% of ZAR; P < 0.01) and by 18% in females (26 +/- 2% of ZAR; P < 0.05). Sarcolemmal K(ATP) channel blockade abolished the training-induced cardioprotection in both males and females, increasing infarct size to 43 +/- 3% and 52 +/- 4% of ZAR, respectively. In the absence of HMR-1098, infarct size was significantly lower in sedentary females than in males (33 +/- 4% vs. 42 +/- 2% of ZAR, respectively; P < 0.01). However, the presence of HMR-1098 abolished this sex difference, increasing infarct size by 58% in the sedentary females (P < 0.01) but having no effect on infarct size in sedentary males. This study demonstrates that the sex-specific and exercise-acquired resistance to myocardial ischemia-reperfusion injury is dependent on sarcolemmal K(ATP) activity during ischemia.  相似文献   

13.
Adenosine-enhanced ischemic preconditioning (APC) extends the protection afforded by ischemic preconditioning (IPC) by both significantly decreasing infarct size and significantly enhancing postischemic functional recovery. The purpose of this study was to determine whether APC is modulated by ATP-sensitive potassium (K(ATP)) channels and to determine whether this modulation occurs before ischemia or during reperfusion. The role of K(ATP) channels before ischemia (I), during reperfusion (R), or during ischemia and reperfusion (IR) was investigated using the nonspecific K(ATP) blocker glibenclamide (Glb), the mitochondrial (mito) K(ATP) channel blocker 5-hydroxydecanoate (5-HD), and the sarcolemmal (sarc) K(ATP) channel blocker HMR-1883 (HMR). Infarct size was significantly increased (P < 0.05) in APC hearts with Glb-I, Glb-R, and 5-HD-I treatment and partially with 5-HD-R. Glb-I and Glb-R treatment significantly decreased APC functional recovery (P < 0.05 vs. APC), whereas 5-HD-I and 5-HD-R had no effect on APC functional recovery. HMR-IR significantly decreased postischemic functional recovery (P < 0.05 vs. APC) but had no effect on infarct size. These data indicate that APC infarct size reduction is modulated by mitoK(ATP) channels primarily during ischemia and suggest that functional recovery is modulated by sarcK(ATP) channels during ischemia and reperfusion.  相似文献   

14.
We recently showed that activation of ATP-sensitive potassium (KATP) channels in PC12 cells induces protection against the neurotoxic effect of rotenone, a mitochondrial complex I inhibitor. In this study, we sought to determine the locus of the KATP channels that mediate this protection in PC12 cells. We found that pretreatment of PC12 cells with diazoxide, a mitochondrial KATP channel selective opener, dose-dependently increases cell viability against rotenone-induced cell death as indicated in trypan blue exclusion assays. The protective effect of this preconditioning is attenuated by 5-hydroxydecanoic acid (5-HD), a selective mitochondrial KATP channel antagonist but not in the presence of HMR-1098, a selective plasma membrane KATP potassium channel antagonist. In contrast, P-1075, a selective plasma membrane KATP channel opener, does not induce protection. Using specific antibodies against SUR1 and Kir6.1, we detected immunoreactive proteins of apparent molecular masses 155 and 50 kDa, corresponding to those previously reported for SUR1 and Kir6.1, respectively, in the mitochondria-enriched fraction of PC12 cells. In addition, whole cell patch-clamp studies revealed that inward currents in PC12 cells are insensitive to P-1075, HMR-1098, glibenclamide and diazoxide, indicating that functional plasma membrane KATP channels are negligible. Taken together, our results demonstrate for the first time that activation of mitochondrial KATP channels elicits protection against rotenone-induced cell death.  相似文献   

15.
Ischemic preconditioning (IP) may protect the lung from ischemia-reperfusion (I/R) injury following cardiopulmonary by-pass and lung or heart transplantation. The present study was undertaken to investigate the role of ATP-dependent potassium channels (K(ATP)) in IP in the isolated buffer-perfused rat lung (IBPR) under conditions of elevated pulmonary vasoconstrictor tone (PVT). Since pulmonary arterial perfusion flow and left atrial pressure were constant, changes in pulmonary arterial pressure (PAP) directly reflect changes in pulmonary vascular resistance (PVR). When compared to control value, the pulmonary vasodilator responses to histamine and acetylcholine (ACh) following 2 h of hypothermic ischemia were significantly attenuated, whereas the pulmonary vasodilator response to sodium nitroprusside (SNP) was not altered. IP in the form of two cycles of 5 min of ischemia and reperfusion applied prior to the two-hour interval of ischemia, prevented the decrease in the pulmonary vasodilator responses to histamine and ACh. Pretreatment with glybenclamide (GLB) or HMR-1098, but not 5-hydroxydecanoic acid (5-HD), prior to IP abolished the protective effect of IP. In contrast, GLB or 5-HD did not significantly alter the pulmonary vasodilator response to histamine without IP pretreatment. The present data demonstrate that IP prevents impairment of endothelium-dependent vasodilator responses in the rat pulmonary vascular bed. The present data further suggest that IP may alter the mediation of the pulmonary vasodilator response to histamine and thereby trigger a mechanism dependent on activation of sarcolemmal, and not mitochondrial, K(ATP) channels to preserve endothelial-dependent vasodilator responses and protect against I/R injury in the lung.  相似文献   

16.
Whether the mitochondrial ATP-dependent potassium (mK(ATP)) channel is the trigger or the mediator of cardioprotection is controversial. We investigated the critical time sequences of mK(ATP) channel opening for cardioprotection in isolated rabbit hearts. Pretreatment with diazoxide (100 microM), a selective mK(ATP) channel opener, for 5 min followed by 10 min washout before the 30-min ischemia and 2-h reperfusion significantly reduced infarct size (9 +/- 3 vs. 35 +/- 3% in control), indicating a role of mK(ATP) channels as a trigger of protection. The protection was blocked by coadministration of the L-type Ca(2+) channel blockers nifedipine (100 nM) or 5-hydroxydecanoic acid (5-HD; 50 microM) or by the protein kinase C (PKC) inhibitor chelerythrine (5 microM). The protection of diazoxide was not blocked by 50 microM 5-HD but was blocked by 200 microM 5-HD or 10 microM glybenclamide administrated 5 min before and throughout the 30 min of ischemia, indicating a role of mK(ATP) opening as a mediator of protection. Giving diazoxide throughout the 30 min of ischemia also protected the heart, and the protection was not blocked by chelerythrine. Nifedipine did not affect the ability of diazoxide to open mK(ATP) channels assessed by mitochondrial redox state. In electrically stimulated rabbit ventricular myocytes, diazoxide significantly increased Ca(2+) transient but had no effect on L-type Ca(2+) currents. Our results suggest that opening of mK(ATP) channels can trigger cardioprotection. The trigger phase may be induced by elevation of intracellular Ca(2+) and activation of PKC. During the lethal ischemia, mK(ATP) channel opening mediates the protection, independent of PKC, by yet unknown mechanisms.  相似文献   

17.
The relative roles of mitochondrial (mito) ATP-sensitive K(+) (mitoK(ATP)) channels, protein kinase C (PKC), and adenosine kinase (AK) in adenosine-mediated protection were assessed in Langendorff-perfused mouse hearts subjected to 20-min ischemia and 45-min reperfusion. Control hearts recovered 72 +/- 3 mmHg of ventricular pressure (50% preischemia) and released 23 +/- 2 IU/g lactate dehydrogenase (LDH). Adenosine (50 microM) during ischemia-reperfusion improved recovery (149 +/- 8 mmHg) and reduced LDH efflux (5 +/- 1 IU/g). Treatment during ischemia alone was less effective. Treatment with 50 microM diazoxide (mitoK(ATP) opener) during ischemia and reperfusion enhanced recovery and was equally effective during ischemia alone. A(3) agonism [100 nM 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide], A(1) agonism (N(6)-cyclohexyladenosine), and AK inhibition (10 microM iodotubercidin) all reduced necrosis to the same extent as adenosine, but less effectively reduced contractile dysfunction. These responses were abolished by 100 microM 5-hydroxydecanoate (5-HD, mitoK(ATP) channel blocker) or 3 microM chelerythrine (PKC inhibitor). However, the protective effects of adenosine during ischemia-reperfusion were resistant to 5-HD and chelerythrine and only abolished when inhibitors were coinfused with iodotubercidin. Data indicate adenosine-mediated protection via A(1)/A(3) adenosine receptors is mitoK(ATP) channel and PKC dependent, with evidence for a downstream location of PKC. Adenosine provides additional and substantial protection via phosphorylation to 5'-AMP, primarily during reperfusion.  相似文献   

18.
The mechanism by which leptin increases ATP-sensitive K(+) (K(ATP)) channel activity was investigated using the insulin-secreting cell line, CRI-G1. Wortmannin and LY 294002, inhibitors of phosphoinositide 3-kinase (PI3-kinase), prevented activation of K(ATP) channels by leptin. The inositol phospholipids phosphatidylinositol bisphosphate and phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3)) mimicked the effect of leptin by increasing K(ATP) channel activity in whole-cell and inside-out current recordings. LY 294002 prevented phosphatidylinositol bisphosphate, but not PtdIns(3,4,5)P(3), from increasing K(ATP) channel activity, consistent with the latter lipid acting as a membrane-associated messenger linking leptin receptor activation and K(ATP) channels. Signaling cascades, activated downstream from PI 3-kinase, utilizing PtdIns(3,4,5)P(3) as a second messenger and commonly associated with insulin and cytokine action (MAPK, p70 ribosomal protein-S6 kinase, stress-activated protein kinase 2, p38 MAPK, and protein kinase B), do not appear to be involved in leptin-mediated activation of K(ATP) channels in this cell line. Although PtdIns(3,4,5)P(3) appears a plausible and attractive candidate for the messenger that couples K(ATP) channels to leptin receptor activation, direct measurement of PtdIns(3,4,5)P(3) demonstrated that insulin, but not leptin, increased global cellular levels of PtdIns(3,4,5)P(3). Possible mechanisms to explain the involvement of PI 3-kinases in K(ATP) channel regulation are discussed.  相似文献   

19.
This study was conducted to examine the relationship between myocardial ATP-sensitive potassium (K(ATP)) channels and sex differences in myocardial infarct size after in vitro ischemia-reperfusion (I/R). Hearts from adult male and female Sprague-Dawley rats were excised and exposed to an I/R protocol (1 h of ischemia, followed by 2 h of reperfusion) on a modified Langendorff apparatus. Hearts from female rats showed significantly smaller infarct sizes than hearts from males (23 +/- 4 vs. 40 +/- 5% of the zone at risk, respectively; P < 0.05). Administration of HMR-1098, a sarcolemmal K(ATP) channel blocker, abolished the sex difference in infarct size (42 +/- 4 vs. 45 +/- 5% of the zone at risk in hearts from female and male rats, respectively; P = not significant). Further experiments showed that blocking the K(ATP) channels in ischemia, and not reperfusion, was sufficient to increase infarct size in female rats. These data demonstrate that sarcolemmal K(ATP) channels are centrally involved in mechanisms that underlie sex differences in the susceptibility of the intact heart to I/R injury.  相似文献   

20.
Das B  Sarkar C 《Life sciences》2005,77(11):1226-1248
The relative contributions of cardiomyocyte sarcolemmal ATP-sensitive K(+) (K(ATP)) and mitochondrial K(ATP) channels in the cardioprotection and antiarrhythmic activity induced by K(ATP) channel openers remain obscure, though the mitochondrial K(ATP) channels have been proposed to be involved as a subcellular mediator in cardioprotection afforded by ischemic preconditioning. In the present study, we sought to investigate the effects of administration of ATP-sensitive K(+) channel (K(ATP)) openers (nicorandil and minoxidil), a specific mitochondrial K(ATP) channel blocker (5-hydroxydecanoate (5-HD)) and a specific sarcolemmal K(ATP) channel blocker (HMR 1883; (1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea) prior to coronary occlusion as well as prior to post-ischemic reperfusion on survival rate, ischemia-induced and reperfusion-induced arrhythmias and myocardial infarct size in anesthetized albino rabbits. The thorax was opened in the left 4th intercostal space and after pericardiotomy the heart was exposed. In Group I (n=88), occlusion of the left main coronary artery and hence, myocardial ischemia-induced arrhythmias was achieved by tightening a previously placed loose silk ligature for 30 min. In Group II (n=206), arrhythmias were induced by reperfusion following a 20-min ligation of the left main coronary artery. Both in Group I and Group II, intravenous (i.v.) administration of nicorandil (0.47 mg/kg), minoxidil (0.5 mg/kg), HMR 1883 (3 mg/kg)/nicorandil and HMR 1883 (3 mg/kg)/minoxidil before coronary artery occlusion increased survival rate (86%, 75%, 75% and 86% vs. 55% in the control subgroup in Group I; 75%, 67%, 67% and 75% vs. 46% in the control subgroup in Group II), significantly decreased the incidence and severity of life-threatening arrhythmias. In Group II, i.v. administration of nicorandil and minoxidil before coronary artery occlusion significantly decreased myocardial infarct size. However, i.v. administration of nicorandil or minoxidil before reperfusion did neither increase survival rate nor confer any antiarrhythmic or cardioprotective effects. The antiarrhythmic and cardioprotective effects of both nicorandil and minoxidil were abolished by pretreating the rabbits with 5-HD (5 mg/kg, i.v. bolus), a selective mitochondrial K(ATP) channel blocker but not by HMR 1883 (3 mg/kg). In the present study, higher levels of malondialdehyde (MDA) and lower levels of reduced glutathione (GSH) and superoxide dismutase (SOD) in necrotic zone of myocardium in all the 16 subgroups in Group II suggest little anti-free radical property of nicorandil and minoxidil. We conclude that intervention by intravenous administration of nicorandil and minoxidil (through the selective activation of mitochondrial K(ATP) channels) increased survival rate and exhibited antiarrhythmic and cardioprotective effects during coronary occlusion and reperfusion in anesthetized rabbits when administered prior to coronary occlusion. The cardiomyocyte mitochondrial K(ATP) channel may be a pharmacologically modulable target of cardioprotection and antiarrhythmic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号