首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have suggested that there are significant differences in replication capacities and cytopathicities among human immunodeficiency virus type 1 (HIV-1) isolates and that these differences correlate with the clinical status and geographical origin of infected individuals. However, it has been difficult to assess whether reported distinctions could be attributed to the methods used or whether they imply a true disparity between viral isolates. We thus attempted to characterize the replication properties of HIV-1 isolates directly recovered from infected patients (primary isolates) by using a standardized infection assay. Viruses were isolated from patients' peripheral blood mononuclear cells (PBMC) by a single coculture with normal donor PBMC stimulated with phytohemagglutinin. Replication curves and cytopathic effect of a standard inoculum (1 ng of p24) of 66 primary HIV-1 isolates were similar regardless of clinical stage of the patient (asymptomatic, AIDS-related complex, or AIDS) and evolutive feature (rate of progression to AIDS). There was no difference between viruses derived from patients sensitive to zidovudine and those derived from patients resistant to zidovudine. Moreover, no difference was found among viral isolates of different geographical origins (Central Africa, Zaire, Brazil, or France). Similarly, the replication patterns and cytopathicities of isolates from bronchoalveolar lymphocytes did not differ from those of isolates derived from PBMC. In contrast, the same amount of viral inoculum of five laboratory HIV-1 strains (HIV-1, EL1, SF, MN, and RF) produced different replication curves and were much less cytopathic. In contrast to laboratory viral strains, it appears that the primary HIV-1 isolates tested, whatever their clinical status and source, exhibited similar replication capacities and cytopathicities in allogeneic donor PBMC.  相似文献   

2.
HIV-1 infection leads to a disease that attacks the central regulatory mechanisms of the immune response. As mucosal tissue is one of the primary sites infected with HIV in vivo, we examined the effects of HIV exposure on human mast cells, important components of mucosal defense. Using the human mast cell line, HMC-1, which expresses CXCR4 but not CCR5 on the cell surface, we found that several HIV-1 X4 tropic lab (IIIB, RF) and primary isolates but not R5 (BAL, ADA) isolates productively infected these cells. Furthermore, stem cell factor-dependent mast cells derived from primary fetal liver or cord blood cultures were also productively infected with both X4 and R5 HIV-1 strains. Infection was blocked at the level of viral entry using monoclonal antibodies to CXCR4 and CD4. Treatment of HMC-1 with TNF-alpha and TGF-beta stimulated cell surface expression of CCR5 and up-regulated expression of both CCR5 and CXCR4 on primary mast cells, leading to increased susceptibility to both X4 and R5 viral isolates. HIV-1 infection also resulted in histamine release from these mast cells, most due in part to HIV-mediated cell death. These results demonstrate that X4 viruses can use CD4 and the CXCR4 receptor to infect mast cells, suggesting that mast cell-T cell interactions may contribute to HIV mediated immune dysfunction in the mucosa.  相似文献   

3.
We describe here a unique anti-HIV-1 membrane, derived from a chemically modified porous polypropylene (PP) membrane, which lowers viral infectivity upon the filtration of HIV-1 suspension. A cationic polymer, polyethyleneimine (PEI) was graft-polymerized onto the PP filter membrane (PP-PEI), and infectious HIV-1(HTLV-IIIB) derived from MOLT-4/HIV-1(HTLV-IIIB) cells (HIV-1(HTLV-IIIB(MOLT-4)) was applied. When a viral suspension of high titer (10(3.93) TCID50 ml(-1) was filtered, efficient reduction (>99%) of gag p24 antigen levels and infectious titer resulted. In a viral suspension of medium titer (10(2.37) TCID50 ml(-1), a significant decrease in the p24 antigen did not occur, although the titer was markedly reduced (>95%). Electron microscopic observation suggested that PEI induced viral aggregations under high titer conditions, and under medium titer conditions, PEI deprived HIV-1(HTLV-IIIB(MOLT-4)) of its infectivity alone to avoid virus adsorption. In contrast, HIV-1 propagated in human peripheral blood mononuclear cells (PBMC) such as HIV-1(HTLV-III(PBMC)) was more efficiently trapped by PP-PEI at lower titers as compared with HIV-1(HTLV-IIIB(MOLT-4)) from MOLT-4/HIV-1(HTLV-IIIB) cells. These data suggest host cell modification in the interactions between PP-PEI and HIV-1 strains. Since HIV-1(HTLV-IIIB(MOLT-4)) and HIV-1(HTLV-IIIB(PBMC)) were almost electrically neutral and negative, respectively, we concluded that the divergent effect of PEI on each HIV-1(HTLV-IIIB) resulted from their different electrical characteristics.  相似文献   

4.
In the present sudy, chemokine receptor-usage of primary HIV-1 isolates was examined using U87-CD4 cells expressing chemokine receptors CCR3, CCR5 and CXCR4. HIV-1 was isolated from the peripheral blood mononuclear cells (PBMC) and/or plasma of eight HIV-1-infected individuals in late CDC-II and CDC-IV clinical stages using PHA-blast prepared from the PBMC of healthy blood donors. The primary HIV-1 isolates from patients in late CDC-II stage rarely infected monocyte-derived macrophages in the present study, whereas most isolates from patients in the CDC-IV stage infected the macrophages. In the experiments using U87-CD4 cells expressing chemokine receptors, the isolates from patients in the late CDC-II stage infected U87-CD4 cells expressing CXCR4, but not U87-CD4 cells expressing CCR5. In contrast, most isolates from patients in the CDC-IV stage infected both U87-CD4 cells expressing CXCR4 or CCR5. The isolates which infected both U87-CD4 cells were supposed to contain dual tropic HIV-1 or a mixture of CXCR4-tropic and CCR5-tropic HIV-1s. Analysis of the deduced amino acid sequence of the V3 region in proviral env gene showed that the V3 region in U87-CD4 cells infected with CXCR4-tropic HIV-1 isolates was largely different from that in the cells infected with CCR5-tropic isolates, but were highly similar to that in cells infected with dual tropic isolates. These results suggest that PHA-blasts may preferentially support the replication of the CXCR4-tropic and dual tropic HIV-1s, and that CXCR4-tropic and dual tropic HIV-1s are also present in peripheral blood from patients in the late stage of the asymptomatic phase.  相似文献   

5.
In order to characterize the biological properties of human immunodeficiency virus type 1 (HIV-1) variants from different tissues (peripheral blood mononuclear cells [PBMC], lymph node, spleen, brain, and lung) of one patient, we have chosen long-range PCR to amplify virtually full-length HIV proviruses and to construct replication-competent viruses by adding a patient-specific 5' long terminal repeat. To avoid selection during propagation in CD4+ target cells, we transfected 293 cells and used the supernatants from these cells as challenge viruses for tropism studies after titration on human PBMC. Despite differences in the V3 loop of the major variants found in brain and lung compared to lymphoid tissues all recombinant HIV clones obtained showed identical cell tropism and replicative kinetics. After infection of human PBMC these viruses replicated with similar kinetics, with a slow/low-titer, non-syncytium-inducing phenotype. In contrast to the prediction of macrophage tropism, drawn from the V3 loop sequence, none of these viruses infected monocyte-derived macrophages. The challenge of blood dendritic cells by these recombinant viruses in the presence of tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and interleukin-4 resulted in a productive infection only after adding stimulated CD4+ T lymphocytes. Therefore, the biological properties of the HIV-1 variants derived from nonlymphoid tissue of this patient did not differ from those of HIV-1 variants from lymphoid tissue with respect to tropism for primary cells such as PBMC, macrophages, and blood dendritic cells.  相似文献   

6.
All presently available replication-competent proviral clones of human immunodeficiency virus type 1 (HIV-1) are derived from cell culture-amplified virus. Since tissue culture is highly selective for viral strains with an in vitro growth advantage, such clones may not be representative of the biologically relevant virus present in vivo. In this study, we report the molecular cloning and genotypic characterization of 10 HIV-1 genomes directly from uncultured brain tissue of a patient with AIDS dementia complex. Targeting unintegrated circular HIV-1 molecules for recombinant lambda phage cloning, we obtained four full-length genomes with one or two long terminal repeats (LTRs), three defective genomes with internal deletions, two rearranged genomes with inverted LTR sequences, and one integrated proviral half with flanking cellular sequences. Nucleotide sequence analysis of these clones demonstrated chromosomal integration, circle formation, genomic inversion, and LTR-mediated autointegration of HIV-1 genomes in vivo. Comparison of a 510-bp hypervariable envelope region among 8 lambda phage-derived and 12 polymerase chain reaction-derived clones from the same brain specimen identified a predominant viral form as well as genetically divergent variants. Variability among 19 of 20 clones ranged between 0.2 and 1.2%. One clone exhibited 8.2% nucleotide sequence differences consisting almost exclusively of G-to-A changes. Transfection of the four full-length HIV-1 genomes identified one clone (YU-2) as replication competent and exhibiting growth characteristics similar to those of tissue culture-derived macrophage tropic strains of HIV-1. These results demonstrate, for the first time, that replication-competent HIV-1 genomes, complex mixtures of defective viral forms, and chromosomally integrated provirus persist in vivo. In addition, the brain-derived viral clones are expected to prove valuable for future studies of macrophage and neurotropism as well as for the analysis of other viral properties that are subject to in vitro selection pressures.  相似文献   

7.
This study examined the relationship between ex vivo human immunodeficiency virus type 1 (HIV-1) fitness and viral genetic diversity during the course of HIV-1 disease. Primary HIV-1 isolates from 10 patients at different time points were competed against control HIV-1 strains in peripheral blood mononuclear cell (PBMC) cultures to determine relative fitness values. Patient HIV-1 isolates sequentially gained fitness during disease at a significant rate that directly correlated with viral load and HIV-1 env C2V3 diversity. A loss in both fitness and viral diversity was observed upon the initiation of antiretroviral therapy. A possible relationship between genotype and phenotype (virus replication efficiency) is supported by the parallel increases in ex vivo fitness and viral diversity during disease, of which the correlation is largely based on specific V3 sequences. Syncytium-inducing, CXCR4-tropic HIV-1 isolates did have higher relative fitness values than non-syncytium-inducing, CCR5-tropic HIV-1 isolates, as determined by dual virus competitions in PBMC, but increases in fitness during disease were not solely powered by a gradual switch in coreceptor usage. These data provide in vivo evidence that increasing HIV-1 replication efficiency may be related to a concomitant increase in HIV-1 diversity, which in turn may be a determining factor in disease progression.  相似文献   

8.
Viral infectivity factor (Vif) is one of the human immunodeficiency virus (HIV) accessory proteins and is conserved in the primate lentivirus group. This protein is essential for viral replication in vivo and for productive infection of nonpermissive cells, such as peripheral blood mononuclear cells (PBMC). Vif counteracts an antiretroviral cellular factor in nonpermissive cells named CEM15/APOBEC3G. Although HIV type 1 (HIV-1) Vif protein (Vif1) can be functionally replaced by HIV-2 Vif protein (Vif2), its identity is very small. Most of the functional studies have been carried out with Vif1. Characterization of functional domains of Vif2 may elucidate its function, as well as differences between HIV-1 and HIV-2 infectivity. Our aim was to identify the permissivity of different cell lines for HIV-2 vif-minus viruses. By mutagenesis specific conserved motifs of HIV-2 Vif protein were analyzed, as well as in conserved motifs between Vif1 and Vif2 proteins. Vif2 mutants were examined for their stability, expression, and cellular localization in order to characterize essential domains of Vif2 proteins. Viral replication in various target cells (PBMC and H9, A3.01, U38, and Jurkat cells) and infectivity in single cycle assays in the presence of APOBEC3G were also analyzed. Our results of viral replication show that only PBMC have a nonpermissive phenotype in the absence of Vif2. Moreover, the HIV-1 vif-minus nonpermissive cell line H9 does not show a similar phenotype for vif-negative HIV-2. We also report a limited effect of APOBEC3G in a single-cycle infectivity assay, where only conserved domains between HIV-1 and HIV-2 Vif proteins influence viral infectivity. Taken together, these results allow us to speculate that viral inhibition by APOBEC3G is not the sole and most important determinant of antiviral activity against HIV-2.  相似文献   

9.
10.
To determine the genomic polymorphism and biological properties present in HIV-1 Brazilian isolates, we analyzed five viral isolates obtained from patients residing in Rio de Janeiro (P1 and P5), S?o Paulo (P3) and Bahia (P2 and P4) states. For each viral isolate in vitro characteristics such as replication rate, syncytium-inducing capacity and cell death were observed in lymphoblastoid (H9, CEM and peripheral blood mononuclear cells) as well as monocytoid (U937) cells. In addition, the evaluation of the restriction fragment length polymorphism of these isolates was also performed using a panel of endonucleases such as Hind III, Bgl II, Sac I, Pst I, Kpn I and Eco RI. One of the isolates (P1), showed the highest phenotypic and genotypic divergence, when compared to others. The results found suggest a HIV heterogeneity in Brazil similar to that already described in other regions of the world.  相似文献   

11.
Naturally occurring isolates of human immunodeficiency virus (HIV) have been described which are deficient in their ability to fuse with and kill CD4+ target cells. Although the molecular basis for their attenuation has not yet been defined, several lines of evidence point toward the viral envelope gene as a key determinant of viral pathogenicity. In the present article, we report the biological characterization of two highly cytopathic variants derived by repeated cell-free passage of an attenuated isolate of HIV type 2 (HIV-2), termed HIV-2/ST. Unlike the parental virus, the cytopathic variants were found to infect Sup-T1 cells with great efficiency and to induce both cell fusion and profound killing in these cultures. To determine whether changes in the viral envelope gene were responsible for the observed phenotypic differences, we examined the CD4 binding affinity of these viruses using a novel assay designed to quantitate the binding of fluoresceinated CD4 to viral envelope in its native configuration on the cell surface. The results demonstrated that the affinity of parental HIV-2/ST envelope for CD4 was 2 orders of magnitude reduced, while the cytopathic variants exhibited a high CD4 binding affinity, comparable to that of cytopathic HIV-1 and HIV-2 isolates. From these data, we conclude that the cytopathic potential of HIV depends, at least in part, on its receptor-binding affinity. In addition, our study documents strong selection pressures for viruses with increased CD4 affinity during propagation in immortalized T-cell lines, thus emphasizing the need to study HIV envelope biology in natural target cells.  相似文献   

12.
13.
14.
This study was designed to examine the impact of human immunodeficiency virus type 1 (HIV-1) fitness on disease progression through the use of a dual competition/heteroduplex tracking assay (HTA). Despite numerous studies on the impact of HIV-1 diversity and HIV-specific immune response on disease progression, we still do not have a firm understanding of the long-term pathogenesis of this virus. Strong and early CD8-positive cytotoxic T-cell and CD4-positive T-helper cell responses directed toward HIV-infected cells appear to curb HIV pathogenesis. However, the rate at which the virus infects the CD4(+) T-cell population and possibly destroys the HIV-specific immune response may also alter the rate of disease progression. For HIV-1 fitness studies, we established conditions for dual HIV-1 infections of peripheral blood mononuclear cells (PBMC) and a sensitive HTA to measure relative virus production. A pairwise comparison was then performed to estimate the relative fitness of various non-syncytium-inducing/CCR5-tropic (NSI/R5) and syncytium-inducing/CXCR4-tropic (SI/X4) HIV-1 isolates. Four HIV-1 strains (two NSI/R5 and two SI/X4) with moderate ex vivo fitness were then selected as controls and competed against primary HIV-1 isolates from an HIV-infected Belgian cohort. HIV-1 isolates from long-term survivors (LTS) were outcompeted by control strains and were significantly less fit than HIV-1 isolates from patients with accelerated progression to AIDS (PRO). In addition, NSI/R5 HIV-1 isolates from PRO overgrew control SI/X4 strains, suggesting that not all SI/X4 HIV-1 isolates replicate more efficiently than all NSI/R5 isolates. Finally, there were strong, independent correlations between viral load and the total relative fitness values of HIV-1 isolates from PRO (r = 0.84, P = 0.033) and LTS (r = 0.86, P = 0.028). Separation of the PRO and LTS plots suggest that HIV-1 fitness together with viral load may be a strong predictor for the rate of disease progression.  相似文献   

15.
Nested-primer polymerase chain reaction (PCR) has been applied to the molecular cloning of 4.6-kb half-genome fragments of human immunodeficiency virus type 1 (HIV-1) taken directly from the peripheral blood mononuclear cells (PBMC) of an individual with neurological symptoms of HIV-1 infection. In a similar manner, gp120-coding portions of the envelope gene were cloned after PBMC from the same blood sample were cocultivated with uninfected PBMC for 28 days. The complete 1.6-kb nucleotide sequence of the gp120 gene was determined from each of 35 clones examined. Two of 13 (15%) PBMC-derived gp120 genes and 3 of 22 (14%) coculture-derived gp120 genes were defective as a result of frameshifts and an in-frame stop codon(s). Mean diversity between individual gp120-coding sequences in PBMC was fivefold greater (3.24%) than after coculture (0.65%). A predominant sequence of "strain" was found after coculture that was distinct from the diverse viral genotypes detected in vivo and therefore was selectively amplified during in vitro propagation. Multiple distinct third variable (V3) regions encoding the principal neutralizing domain of the envelope protein were detected in PBMC-derived genes, suggesting the presence of immunologic diversity of HIV env genes in vivo not reflected in the cocultured virus sample. The large size of the HIV fragments generated in this study will permit analysis of the diversity of immunologic reactivity, gene function, and pathogenicity of HIV genomes present within infected individuals, including the functional significance of the loss of diversity that occurs upon coculture.  相似文献   

16.
Strains of the feline immunodeficiency virus (FIV) presently under investigation exhibit distinct patterns of in vitro tropism. In particular, the adaptation of FIV for propagation in Crandell feline kidney (CrFK) cells results in the selection of strains capable of forming syncytia with cell lines of diverse species origin. The infection of CrFK cells by CrFK-adapted strains appears to require the chemokine receptor CXCR4 and is inhibited by its natural ligand, stromal cell-derived factor 1alpha (SDF-1alpha). Here we found that inhibitors of CXCR4-mediated infection by human immunodeficiency virus type I (HIV-1), such as the bicyclam AMD3100 and short peptides derived from the amino-terminal region of SDF-1alpha, also blocked infection of CrFK by FIV. Nevertheless, we observed differences in the ranking order of the peptides as inhibitors of FIV and HIV-1 and showed that such differences are related to the species origin of CXCR4 and not that of the viral envelope. These results suggest that, although the envelope glycoproteins of FIV and HIV-1 are substantially divergent, FIV and HIV-1 interact with CXCR4 in a highly similar manner. We have also addressed the role of CXCR4 in the life cycle of primary isolates of FIV. Various CXCR4 ligands inhibited infection of feline peripheral blood mononuclear cells (PBMC) by primary FIV isolates in a concentration-dependent manner. These ligands also blocked the viral transduction of feline PBMC by pseudotyped viral particles when infection was mediated by the envelope glycoprotein of a primary FIV isolate but not by the G protein of vesicular stomatitis virus, indicating that they act at an envelope-mediated step and presumably at viral entry. These findings strongly suggest that primary and CrFK-adapted strains of FIV, despite disparate in vitro tropisms, share usage of CXCR4.  相似文献   

17.
Two primary cell targets for human immunodeficiency virus type 1 (HIV-1) infection in vivo are CD4+ T lymphocytes and monocyte-derived macrophages (MDM). HIV-1 encodes envelope glycoproteins which mediate virus entry into these cells. We have utilized infected and radiolabelled primary peripheral blood mononuclear cell (PBMC) and MDM cultures to examine the biochemical and antigenic properties of the HIV-1 envelope produced in these two cell types. The gp120 produced in MDM migrates as a broad, diffuse band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels compared with that of the more homogeneous gp120 released from PBMCs. Glycosidase analyses indicated that the diffuse appearance of the MDM gp120 is due to the presence of asparagine-linked carbohydrates containing lactosaminoglycans, a modification not observed with the gp120 produced in PBMCs. Neutralization experiments, using isogeneic PBMC and MDM-derived macrophage-tropic HIV-1 isolates, indicate that 8- to 10-fold more neutralizing antibody, directed against the viral envelope, is required to block virus produced from MDM. These results demonstrate that HIV-1 released from infected PBMC and MDM cultures differs in its biochemical and antigenic properties.  相似文献   

18.
The viral determinants that underlie human immunodeficiency virus type 1 (HIV-1) neurotropism are unknown, due in part to limited studies on viruses isolated from brain. Previous studies suggest that brain-derived viruses are macrophage tropic (M-tropic) and principally use CCR5 for virus entry. To better understand HIV-1 neurotropism, we isolated primary viruses from autopsy brain, cerebral spinal fluid, blood, spleen, and lymph node samples from AIDS patients with dementia and HIV-1 encephalitis. Isolates were characterized to determine coreceptor usage and replication capacity in peripheral blood mononuclear cells (PBMC), monocyte-derived macrophages (MDM), and microglia. Env V1/V2 and V3 heteroduplex tracking assay and sequence analyses were performed to characterize distinct variants in viral quasispecies. Viruses isolated from brain, which consisted of variants that were distinct from those in lymphoid tissues, used CCR5 (R5), CXCR4 (X4), or both coreceptors (R5X4). Minor usage of CCR2b, CCR3, CCR8, and Apj was also observed. Primary brain and lymphoid isolates that replicated to high levels in MDM showed a similar capacity to replicate in microglia. Six of 11 R5 isolates that replicated efficiently in PBMC could not replicate in MDM or microglia due to a block in virus entry. CD4 overexpression in microglia transduced with retroviral vectors had no effect on the restricted replication of these virus strains. Furthermore, infection of transfected cells expressing different amounts of CD4 or CCR5 with M-tropic and non-M-tropic R5 isolates revealed a similar dependence on CD4 and CCR5 levels for entry, suggesting that the entry block was not due to low levels of either receptor. Studies using TAK-779 and AMD3100 showed that two highly M-tropic isolates entered microglia primarily via CXCR4. These results suggest that HIV-1 tropism for macrophages and microglia is restricted at the entry level by a mechanism independent of coreceptor specificity. These findings provide evidence that M-tropism rather than CCR5 usage predicts HIV-1 neurotropism.  相似文献   

19.
The chemokine receptors CCR-5 and CXCR-4, and possibly CCR-3, are the principal human immunodeficiency virus type 1 (HIV-1) coreceptors, apparently interacting with HIV-1 envelope, in association with CD4. Cell lines coexpressing CD4 and these chemokine receptors were infected with a panel of seven primary HIV-2 isolates passaged in peripheral blood mononuclear cells (PBMC) and three laboratory HIV-2 strains passaged in T-cell lines. The CCR-5, CCR-3, and CXCR-4 coreceptors could all be used by HIV-2. The ability to use CXCR-4 represents a major difference between HIV-2 and the closely related simian immunodeficiency viruses. Most HIV-2 strains using CCR-5 could also use CCR-3, sometimes with similar efficiencies. As observed for HIV-1, the usage of CCR-5 or CCR-3 was observed principally for HIV-2 strains derived from asymptomatic individuals, while HIV-2 strains derived from AIDS patients used CXCR-4. However, there were several exceptions, and the patterns of coreceptor usage seemed more complex for HIV-2 than for HIV-1. The two T-tropic HIV-2 strains tested used CXCR-4 and not CCR-5, while T-tropic HIV-1 can generally use both. Moreover, among five primary HIV-2 strains all unable to use CXCR-4, three could replicate in CCR-5-negative PBMC, which has not been reported for HIV-1. These observations suggest that the CCR-5 coreceptor is less important for HIV-2 than for HIV-1 and indicate that HIV-2 can use other cell entry pathways and probably other coreceptors. One HIV-2 isolate replicating in normal or CCR-5-negative PBMC failed to infect CXCR-4+ cells or the U87MG-CD4 and sMAGI cell lines, which are permissive to infection by HIV-2 but not by HIV-1. This suggests the existence of several HIV-2-specific coreceptors, which are differentially expressed in cell lines and PBMC.  相似文献   

20.
We examined the relationship between the amino acid sequences of the V2 and V3 regions of the envelope protein and the biological properties of ten human immunodeficiency virus type 1 (HIV-1) primary isolates. The infectivity, cytopathic effect (CPE), and syncytium forming activity of these primary isolates were tested against three T cell lines (CEM, MT2, and MOLT4/CL.8 cells), CD8-depleted peripheral blood mononuclear cells (PBMC), and primary monocyte-derived macrophages (MDM) from seronegative donors. In addition to the viral groups which had the syncytium inducing/T-cell line tropic (SI/TT) phenotype or non-syncytium inducing/non-T cell line tropic (NSI/NT) phenotype (including the NSI/macrophage tropic (NSI/MT) phenotype), there was a group of viruses that infected one or two T cell lines and PBMC but could not mediate syncytium formation. We therefore classified this group of viruses as a non-syncytium inducing/partial T-cell line tropic (NSI/pTT) virus. To investigate the relationship between these viral phenotypes and the sequence variability of the V2 and V3 regions of the envelope, we cloned the viral gene segment and sequenced the individual isolates. The sequence data suggested that the SI/TT type changes in the V3 sequence alone mediate a partial T cell line tropism and mild cytopathic effect and that an isolate became more virulent (SI/TT phenotype) if there were additional changes in the V2 or other regions. On the other hand, sequence changes in the V2 region alone could not mediate phenotypic changes but some additional changes in the other variable regions (for example, V3) might be required for the phenotypic changes in combination with changes in V2. These findings also suggested that amino acid changes in both the V2 and V3 region are required for the development of virulent variants of HIV-1 that outgrow during advanced stages of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号