首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By the combination of cosmid cloning, chromosomal jumping, and pulsed-field gel electrophoresis (PFGE), we have fine-mapped the HLA-A subregion of the human major histocompatibility complex (MHC). Through the isolation of a class I jumping clone, the Q alpha-like HLA-G class I gene has been placed within 100 kb of HLA-H. The tight physical linkage of these class I genes has been further supported by hybridizing PFGE blots with locus-specific probes. It has been found that both of the above class I genes are linked to HLA-A, with HLA-H residing no more than 200 kb from the HLA-A gene. These data support the possible existence of a Q alpha-like subregion composed of nonclassical HLA class I genes within the human MHC linked telomerically to the HLA-A locus.  相似文献   

2.
3.
Class I gene contraction within the HLA-A subregion of the human MHC.   总被引:4,自引:0,他引:4  
C P Venditti  M J Chorney 《Genomics》1992,14(4):1003-1009
Individuals expressing either the HLA-A24 or the HLA-A23 histocompatibility antigens have been found to possess an HLA-A class I subregion approximately 50 kb smaller in size than those studied from individuals expressing other HLA-A haplotypes. This originally manifested itself as a haplotype-associated size variation in the NotI and MluI megabase fragments observed on pulsed-field electrophoresis gels after blotting and probing with HLA-A subregion-specific genomic probes. The contracted region falls between the HLA-A and the HLA-G class I genes and specifically includes the novel HLA-A-related pseudogene, HLA-H, as well as the adjacent deteriorated class I pseudogene, 7.0 p. The intactness of locus D6S128, defined by probe pMC6.7 located telomeric to the HLA-H gene, demonstrates that the distal rearrangement point falls within a 20-kb stretch of DNA separating HLA-H from pMC6.7. This extends a previous report regarding variation in class I gene number within the human major histocompatibility complex and precisely localizes the genomic residence of sequences that may define a recombination hot spot. Because the size variation maps to a recombinogenic area, its characterization may ultimately reveal important biological information relevant to the events that shaped the organization of the human HLA class I multigene family.  相似文献   

4.
5.
6.
7.
A new zinc ribbon gene (ZNRD1) is cloned from the human MHC class I region   总被引:6,自引:0,他引:6  
Fan W  Wang Z  Kyzysztof F  Prange C  Lennon G 《Genomics》2000,63(1):139-141
  相似文献   

8.
 The human major histocompatibility complex (MHC) is located within a 4 megabase segment on chromosome 6p21.3. Recently, a highly divergent MHC class I chain-related gene family, MIC was identified within the class I region. The MICA and MICB genes in this family have unique patterns of tissue expression. The MICA gene is highly polymorphic, with more than 20 alleles identified to date. To elucidate the extent of MICB allelic variations, we sequenced exons 2 (α1), 3 (α2), 4 (α3), and 5 (transmembrane) as well as introns 2 and 4 of this gene in 46 HLA homozygous B-cell lines. We report the identification of eleven alleles based on seven non-synonymous, two synonymous, and four intronic nucleotide variations. Interestingly, one allele has a nonsense mutation resulting in a premature termination codon in the α2 domain. Thus, MICB appears to have fewer alleles than MICA, not unlike the allelic ratio between the HLA-C and -B loci. A preliminary linkage analysis of the MICB alleles with those of the closely located MICA and HLA-B genes revealed no conspicuous linkage disequilibrium between them, implying the presence of a potential recombination hotspot between the MICB and MICA genes. Received: 16 April 1997 / Revised: 19 May 1997  相似文献   

9.
10.
In this review a particular aspect of the genomic structure of the major histocompatibility complex (MHC), the organization of MHC class I regions, will be discussed for the rat in comparison to mouse and human.  相似文献   

11.
Involvement of tumor-Ag specific CD4(+) and CD8(+) T cells could be critical in the generation of an effective immunotherapy for cancer. In an attempt to optimize the T cell response against defined tumor Ags, we previously developed a method allowing transgene expression in human dendritic cells (DCs) using retroviral vectors. One advantage of using gene-modified DCs is the potential ability to generate CD8(+) T cells against multiple class I-restricted epitopes within the Ag, thereby eliciting a broad antitumor immune response. To test this, we generated tumor-reactive CD8(+) T cells with DCs transduced with the melanoma Ag gp100, for which a number of HLA-A2-restricted epitopes have been described. Using gp100-transduced DCs, we were indeed able to raise T cells recognizing three distinct HLA-A2 epitopes within the Ag, gp100(154-162), gp100(209-217), and gp100(280-288). We next tested the ability of transduced DCs to raise class II-restricted CD4(+) T cells. Interestingly, stimulation with gp100-transduced DCs resulted in the generation of CD4(+) T cells specific for a novel HLA-DRbeta1*0701-restricted epitope of gp100. The minimal determinant of this epitope was defined as gp100(174-190) (TGRAMLGTHTMEVTVYH). These observations suggest that retrovirally transduced DCs have the capacity to present multiple MHC class I- and class II-restricted peptides derived from a tumor Ag, thereby eliciting a robust immune response against that Ag.  相似文献   

12.
The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank nucleotide sequence databases and have been assigned the accession number D50454  相似文献   

13.
14.
Summary The difficulty in mapping the gene for chloramphenicol resistance (cml R) in Streptomyces coelicolor A3(2) stock strains is possibly due to its location on different sites of the chromosome in various mixed subelones. Fresh isolates from CmlR strains show single unequivocal locations of cml R. The same holds for CmlR strains derived as revertants from CmlS variants. The two best established sites for cml R are one between cys A and met A, the other at right of arg A, possibly in the right empty arc of the map (Fig. 2). The cml R gene was assumed to be on a transposon (SCTn1), together with a gene for arginine-succinate synthase (argG), a gene for chromosome transfer (tra) and a gene for aereal mycelium formation (amy). In a CmlR revertant, the cml R gene appears disjoined from argG (Fig. 5), thus showing the ability of SCTnl to be split and partially transposed. The possible wide occurrence of transposons in the genus Streptomyces is discussed.  相似文献   

15.
Six major histocompatibility complex (MHC) classical class I genes have been identified in cattle, and up to three of these are expressed in variable combinations on different haplotypes. The origin and functional significance of this genetic complexity is unknown. However, an improved assembly of the cattle genome, an expanded database of full-length cDNA sequences and high-resolution frequency data concerning expressed class I genes in an economically important cattle breed combine to provide a new opportunity to study the significance of cattle MHC class I diversity. Analysis of these new data supports assignment of alleles to six discrete genes and further shows that all these classical genes share a common ancestor with a single non-classical gene, NC1. While haplotype structure is variable, with thirteen gene configurations identified, there are nevertheless clear constraints relating to both the number and combination of genes. Haplotypes expressing two classical genes are most frequently observed, and the classical class I gene 2 is almost invariably present. The frequency data support the dominance of gene 2, showing that close to 100?% of individuals carry at least one copy. This indicates a hierarchy in the functional importance of particular genes and haplotype structures. Haplotype frequency in cattle populations is therefore likely to impact on differential disease susceptibilities. This knowledge will be important for development of informed breeding strategies aimed at increasing the ability of cattle to survive in the face of future unpredictable pathogen exposure.  相似文献   

16.
17.
The genomic sequences within the alpha-block (approximately 288-310 kb) of the human and chimpanzee MHC class I region contains ten MHC class I genes and three MIC gene fragments grouped together within alternating duplicated genomic segments or duplicons. In this study, the chimpanzee and human genomic sequences were analyzed in order to determine whether the remnants of the ERVK9 and other retrotransposon sequences are useful genomic markers for reconstructing the evolutionary history of the duplicated MHC gene families within the alpha-block. A variety of genes, pseudogenes, autologous DNA transposons and retrotransposons such as Alu and ERVK9 were used to categorize the ten duplicons into four distinct structural groups. The phylogenetic relationship of the ten duplicons was examined by using the neighbour joining method to analyze transposon sequence topologies of selected Alu members, LTR16B and Charlie9. On the basis of these structural groups and the phylogeny of the duplicated transposon sequences, a duplication model was reconstructed involving four multipartite tandem duplication steps to explain the organization and evolution of the ten duplicons within the alpha-block of the chimpanzee and human. The phylogenetic analysis and inferred duplication history suggests that the Patr/HLA-F was the first MHC class I gene to have been fixed and not required as a precursor for further duplication within the alpha-block of the ancestral species.  相似文献   

18.
19.
Molecular analyses of genes in the rabbit MHC (RLA) by pulsed field gel electrophoresis have shown that the relative order of class II genes (DP, DO, DQ, DR) is identical to that in humans and similar to that in the mouse. However, a major difference from either HLA or H-2 was observed at the DR end of the RLA class II complex: class I genes are located in close proximity to DR with no interposed class III sequences. A MluI fragment of 180 kb and a 210-kb SalI fragment both hybridized with the DR probe as well as with different class I probes including that for pR27, a class I gene with T cell-limited pattern of expression. Comparison of two different RLA haplotypes, A and B, indicated that the distance between the DQ and DR subregions differs by approximately 700 kb in the two haplotypes. Testing other unrelated rabbits suggested that this difference segregates within the rabbit population and presumably derives from an insertion/deletion event in different haplotypes. A further difference between the A and B haplotypes included variable distance between genes encoding DO beta and DP; the DR end of the complex and the class I genes linkage was conserved in the two haplotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号