共查询到20条相似文献,搜索用时 15 毫秒
1.
Kumari M Schoiswohl G Chitraju C Paar M Cornaciu I Rangrez AY Wongsiriroj N Nagy HM Ivanova PT Scott SA Knittelfelder O Rechberger GN Birner-Gruenberger R Eder S Brown HA Haemmerle G Oberer M Lass A Kershaw EE Zimmermann R Zechner R 《Cell metabolism》2012,15(5):691-702
Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant. 相似文献
2.
Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis 总被引:1,自引:0,他引:1
Phosphatidic acid is a key intermediate for chloroplast membrane lipid biosynthesis. De novo phosphatidic acid biosynthesis in plants occurs in two steps: first the acylation of the sn-1 position of glycerol-3-phosphate giving rise to lysophosphatidic acid; second, the acylation of the sn-2 position of lysophosphatidic acid to form phosphatidic acid. The second step is catalyzed by a lysophosphatidic acid acyltransferase (LPAAT). Here we describe the identification of the ATS2 gene of Arabidopsis encoding the plastidic isoform of this enzyme. Introduction of the ATS2 cDNA into E. coli JC 201, which is temperature-sensitive and carries a mutation in its LPAAT gene plsC, restored this mutant to nearly wild type growth at high temperature. A green-fluorescent protein fusion with ATS2 localized to the chloroplast. Disruption of the ATS2 gene of Arabidopsis by T-DNA insertion caused embryo lethality. The development of the embryos was arrested at the globular stage concomitant with a transient increase in ATS2 gene expression. Apparently, plastidic LPAAT is essential for embryo development in Arabidopsis during the transition from the globular to the heart stage when chloroplasts begin to form. 相似文献
3.
Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway 总被引:3,自引:0,他引:3
Tang W Yuan J Chen X Gu X Luo K Li J Wan B Wang Y Yu L 《Journal of biochemistry and molecular biology》2006,39(5):626-635
Lysophosphatidic acid acyltransferase (LPAAT) is an intrinsic membrane protein that catalyzes the synthesis of phosphatidic acid (PA) from lysophosphatidic acid (LPA). It is well known that LPAAT is involved in lipid biosynthesis, while its role in tumour progression has been of emerging interest in the last few years. To date, seven members of the LPAAT gene family have been found in human. Here we report a novel LPAAT member, designated as LPAAT-theta, which was 2728 base pairs in length and contained an open reading frame (ORF) encoding 434 amino acids. The LPAAT-theta gene consisted of 12 exons and 11 introns, and mapped to chromosome 4q21.23. LPAAT-theta was ubiquitously expressed in 18 human tissues by RT-PCR analysis. Subcellular localization of LPAAT-theta-EGFP fusion protein revealed that LPAAT-theta was distributed primarily in the endoplasmic reticulum (ER) of COS-7 cells. Furthermore, we found that the overexpression of LPAAT-theta can induce mTOR-dependent p70S6K phosphorylation on Thr389 and 4EBP1 phosphorylation on Ser65 in HEK293T cells. 相似文献
4.
Complete separation of glycerophosphate acyltransferase and 1-acylglycerophosphate acyltransferase from Escherichia coli was obtained by sequential extraction with Triton X-100. Solubilized glycerophosphate acyltransferase was reconstituted by the cholate dispersion and gel filtration method in small unilamellar vesicles. 1-Acylglycerophosphate acyltransferase could not be solubilized from the membranes and was used in endogenous membrane fragments after detergent removal. Mixing of the two preparations and subsequent incubation in the presence of glycerol 3-phosphate, palmitoyl-CoA and oleoyl-CoA resulted in the efficient synthesis of phosphatidic acid. Inclusion of exogenous lysophosphatitic acid in the assay medium resulted in a dilution of the newly synthesized lysophosphatidate. By contrast, the synthesis of phosphatidic acid from glycerol 3-phosphate by the acyltransferases present in native membrane vesicles was barely influenced by the presence of exogenous lysophosphatidic acid. When comparing the utilization of membrane-associated 14C-labeled and newly generated 3H-labeled lysophosphatidic acid, the latter appeared to be the preferred substrate. These results indicate that lysophosphatidic acid, synthesized by glycerophosphate acyltransferase, is utilized by 1-acylglycerophosphate acyltransferase without prior mixing with the total membrane-associated pool of lysophosphatidic acid, and suggest a close proximity of the two enzymes in native E. coli membranes. This property of the acyltransferases is lost upon separation and reconstitution of enzyme activities. 相似文献
5.
Yamashita A Kawagishi N Miyashita T Nagatsuka T Sugiura T Kume K Shimizu T Waku K 《The Journal of biological chemistry》2001,276(29):26745-26752
CoA-dependent transacylation activity in microsomes is known to catalyze the transfer of fatty acids between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acids. We previously found a novel acyl-CoA synthetic pathway, ATP-independent acyl-CoA synthesis from phospholipids. We proposed that: 1) the ATP-independent acyl-CoA synthesis is due to the reverse reaction of acyl-CoA:lysophospholipid acyltransferases and 2) the reverse and forward reactions of acyltransferases can combine to form a CoA-dependent transacylation system. To test these proposals, we examined whether or not recombinant mouse acyl-CoA:1-acyl-sn-glycero-3-phosphate (lysophosphatidic acid, LPA) acyltransferase (LPAAT) could catalyze ATP-independent acyl-CoA synthetic activity and CoA-dependent transacylation activity. ATP-independent acyl-CoA synthesis was indeed found in the membrane fraction from Escherichia coli cells expressing mouse LPAAT, whereas negligible activity was observed in mock-transfected cells. Phosphatidic acid (PA), but not free fatty acids, served as an acyl donor for the reaction, and LPA was formed from PA in a CoA-dependent manner during acyl-CoA synthesis. These results indicate that the ATP-independent acyl-CoA synthesis was due to the reverse reaction of LPAAT. In addition, bacterial membranes containing LPAAT catalyzed CoA-dependent acylation of LPA; PA but not free fatty acid served as an acyl donor. These results indicate that the CoA-dependent transacylation of LPA consists of 1) acyl-CoA synthesis from PA through the reverse action of LPAAT and 2) the transfer of the fatty acyl moiety of the newly formed acyl-CoA to LPA through the forward reaction of LPAAT. 相似文献
6.
Glycerophospholipids are important components of cellular membranes, required for constructing structural barriers, and for providing precursors of bioactive lipid mediators. Lysophosphatidic acid acyltransferases (LPAATs) are enzymes known to function in the de novo glycerophospholipid biosynthetic pathway (Kennedy pathway), using lysophosphatidic acid (LPA) and acyl-CoA to form phosphatidic acid (PA). Until now, three LPAATs (LPAAT1, 2, and 3) have been reported from the 1-acyl-glycerol-3-phosphate O-acyltransferase (AGPAT) family. In this study, we identified a fourth LPAAT enzyme, LPAAT4, previously known as an uncharacterized enzyme AGPAT4 (LPAATδ), from the AGPAT family. Although LPAAT4 was known to contain AGPAT motifs essential for acyltransferase activities, detailed biochemical properties were unknown. Here, we found that mouse LPAAT4 (mLPAAT4) possesses LPAAT activity with high acyl-CoA specificity for polyunsaturated fatty acyl-CoA, especially docosahexaenoyl-CoA (22:6-CoA, DHA-CoA). mLPAAT4 was distributed in many tissues, with relatively high expression in the brain, rich in docosahexaenoic acid (DHA, 22:6). mLPAAT4 siRNA in a neuronal cell line, Neuro 2A, caused a decrease in LPAAT activity with 22:6-CoA, suggesting that mLPAAT4 functions endogenously. siRNA in Neuro 2A cells caused a decrease in 18:0–22:6 PC, whereas mLPAAT4 overexpression in Chinese hamster ovary (CHO)-K1 cells caused an increase in this species. Although DHA is considered to have many important functions for the brain, the mechanism of its incorporation into glycerophospholipids is unknown. LPAAT4 might have a significant role for maintaining DHA in neural membranes. Identification of LPAAT4 will possibly contribute to understanding the regulation and the biological roles of DHA-containing glycerophospholipids in the brain. 相似文献
7.
A lysophosphatidic acid-binding cytosolic protein stimulates mitochondrial glycerophosphate acyltransferase 总被引:1,自引:0,他引:1
A Vancura M A Carroll D Haldar 《Biochemical and biophysical research communications》1991,175(1):339-343
Rat liver cytosolic fraction caused up to five fold stimulation of mitochondrial glycerophosphate acyltransferase apparently by removing the lysophosphatidic acid formed by the acyltransferase. When mitochondria were incubated with palmityl-CoA, [2-3H]-sn-glycerol 3-phosphate and the cytosolic fraction and the supernatant fluid of the incubated mixture was passed through a Sephadex G-100 column, labeled lysophosphatidic acid eluted in three peaks with Mrs (i) 60-70 kDa, (ii) 10-20 kDa, and (iii) less than 5 kDa. Proteins, responsible for binding of lysophosphatidic acid in peaks (i) and (ii), were purified to near homogeneity as judged by electrophoretic analysis. The lysophosphatidic acid binding protein in peak (i) appears to be serum albumin and peak (iii) represents largely unbound lysophosphatidic acid. The 15 kDa protein, purified from peak (ii), bound lysophosphatidic acid, stimulated the acyltransferase and export of lysophosphatidic acid from mitochondria. 相似文献
8.
9.
Long-chain polyunsaturated fatty acids (PUFAs) accumulate in mammalian testis during puberty and are essential for fertility. To investigate whether lysophospholipid acyltransferases determine the PUFA composition of testicular phospholipids during pubertal development, we compared their mRNA expression, in vitro activity, and specificity with the lipidomic profile of major phospholipids. The accumulation of PUFAs in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine correlated with an induced lysophosphatidic acid acyltransferase (LPAAT)3 mRNA expression, increased microsomal LPAAT3 activity, and shift of LPAAT specificity to PUFA-coenzyme A. LPAAT3 was induced during germ cell maturation, as shown by immunofluorescence microscopy. Accordingly, differentiation of mouse GC-2spd(ts) spermatocytes into spermatides up-regulated LPAAT3 mRNA, increased the amount of polyunsaturated phospholipids, and shifted the specificity for the incorporation of deuterium-labeled docosahexaenoic acid toward phosphatidylcholine and phosphatidylethanolamine. Stable knockdown of LPAAT3 in GC-2spd(ts) cells significantly decreased microsomal LPAAT3 activity, reduced levels of polyunsaturated phosphatidylethanolamine species, and impaired cell proliferation/survival during geneticin selection. We conclude that the induction of LPAAT3 during germ cell development critically contributes to the accumulation of PUFAs in testicular phospholipids, thereby possibly affecting sperm cell production. 相似文献
10.
Abstract We report the identification of an open reading frame in a serogroup B isolate of Neisseria meningitidis that exhibits high nucleotide and predicted amino acid identity with the fpg gene of Escherichia coli , and its product, formamidopyrimidine-DNA glycosylase (Fapy-DNA glycosylase), a DNA repair enzyme. We further show that the meningococcal fpg is co-transcribed with nlaA , encoding a lysophosphatidic acid acyltransferase, and suggest that the DNA repair enzyme may be involved in the regulation of nlaA or its gene product. 相似文献
11.
John S. Swartley Jacqueline T. Balthazar Jack Coleman William M. Shafer David S. Stephens 《Molecular microbiology》1995,18(3):401-412
Lysophosphatidic acid (LPA) acyltransferases of Neisseria meningitidis and Neisseria gonorrhoeae were identified which share homology with other prokaryotic and eukaryotic LPA acyltransferases. In Escherichia coli, the conversion of LPA to phosphatidic acid, performed by the 1-acyl-sn-glycerol-3-phosphate acyltransferase PlsC, is a critical intermediate step in the biosynthesis of membrane glycerophospholipids. A Tn916-generated mutant of a serogroup B meningococcal strain was identified that exhibited increased amounts of capsular polysaccharide, as shown by colony immunoblots, and a threefold increase in the number of assembled pili. The single, truncated 3.8 kb Tn916 insertion in the meningococcal mutant was localized within a 771 bp open reading frame. The gonococcal equivalent of this gene was identified by transformation with the cloned meningococcal mutant gene. In N. gonorrhoeae, the mutation increased piliation fivefold. The insertions were found to be within a gene that was subsequently designated nIaA (n eisserial L PA acyltransferase). The predicted neisserial LPA acyltransferases were homologous (>20% identity,>40% amino acid similarity) to the family of PlsC protein homologues. A cloned copy of the meningococcal nIaA gene complemented in trans a temperature-sensitive E. coli PlsCts? mutant. Tn916 and Ω-cassette insertional inactivations of the neisserial nIaA genes altered the membrane glycerophospholipid compositions of both N. meningitidis and N. gonorrhoeae but were not lethal. Therefore, the pathogenic Neisseria spp. appear to be able to utilize alternative enzyme(s) to produce phosphatidic acid. This hypothesis is supported by the observation that, although the amounts of mature glycerophospholipids were altered in the meningococcal and the gonococcal nIaA mutants, glycerophospholipid synthesis was detectable at significant levels. In addition, acyltransferase enzymatic activity, while reduced in the gonococcal nIaA mutant, was increased in the meningococcal nIaA mutant. We postulate that the pathogenic Neisseria spp. are able to utilize alternate acyltransferases to produce glycerophospholipids in the absence of nIaA enzymatic activity.Implementation of these secondary enzymes results in alterations of glycerophospholipid composition that lead to pleiotropic effects on the cell surface components, including effects on capsule and piliation. 相似文献
12.
Ayciriex S Le Guédard M Camougrand N Velours G Schoene M Leone S Wattelet-Boyer V Dupuy JW Shevchenko A Schmitter JM Lessire R Bessoule JJ Testet E 《Molecular biology of the cell》2012,23(2):233-246
For many years, lipid droplets (LDs) were considered to be an inert store of lipids. However, recent data showed that LDs are dynamic organelles playing an important role in storage and mobilization of neutral lipids. In this paper, we report the characterization of LOA1 (alias VPS66, alias YPR139c), a yeast member of the glycerolipid acyltransferase family. LOA1 mutants show abnormalities in LD morphology. As previously reported, cells lacking LOA1 contain more LDs. Conversely, we showed that overexpression results in fewer LDs. We then compared the lipidome of loa1Δ mutant and wild-type strains. Steady-state metabolic labeling of loa1Δ revealed a significant reduction in triacylglycerol content, while phospholipid (PL) composition remained unchanged. Interestingly, lipidomic analysis indicates that both PLs and glycerolipids are qualitatively affected by the mutation, suggesting that Loa1p is a lysophosphatidic acid acyltransferase (LPA AT) with a preference for oleoyl-CoA. This hypothesis was tested by in vitro assays using both membranes of Escherichia coli cells expressing LOA1 and purified proteins as enzyme sources. Our results from purification of subcellular compartments and proteomic studies show that Loa1p is associated with LD and active in this compartment. Loa1p is therefore a novel LPA AT and plays a role in LD formation. 相似文献
13.
14.
Saori Oka 《Biochemical and biophysical research communications》2010,395(2):232-7396
GPR35 is a rhodopsin-like G protein-coupled receptor identified in 1998. It has been reported that kynurenic acid, a tryptophan metabolite, may act as an endogenous ligand for GPR35. However, the concentrations of kynurenic acid required to elicit the cellular responses are usually high, raising the possibility that another endogenous ligand may exist. In this study, we searched for another endogenous ligand for GPR35. Finally, we found that the magnitude of the Ca2+ response induced by 2-acyl lysophosphatidic acid in the GPR35-expressing HEK293 cells was markedly greater than that in the vector-transfected control cells. Such a difference was not apparent in the case of 1-acyl lysophosphatidic acid. 2-Acyl lysophosphatidic acid also caused the sustained activation of RhoA and the phosphorylation of extracellular signal-regulated kinase, and triggered the internalization of the GPR35 molecule. These results strongly suggest that 2-acyl lysophosphatidic acid is an endogenous ligand for GPR35. 相似文献
15.
16.
Carmen Virto Ingemar Svensson Patrick Adlercreutz 《Enzyme and microbial technology》1999,24(10):1-658
Immobilised 1,3-specific lipase from Rhizopus arrhizus was used as catalyst for the esterification of
-glycero-3-phosphate and fatty acid or fatty acid vinyl ester in a solvent-free system. With lauric acid vinyl ester as acyl donor, aw<0.53 favored the synthesis of lysophosphatidic acid (1-acyl-rac-glycero-3-phosphate, LPA1) and the spontaneous acyl migration of the fatty acid on the molecule. Subsequent acylation by the enzyme resulted in high phosphatidic acid (1,2-diacyl-rac-glycero-3-phosphate, PA) formation and high total conversions (>95%). With oleic acid, maximum conversions of 55% were obtained at low water activities. Temperatures below melting point of the product favored precipitation and resulted in high final conversion and high product ratio [LPA/(PA+LPA)]. Thus, LPA was the only product with lauric acid vinyl ester as acyl donor at 25°C. Increased substrate ratio (
-glycero-3-phosphate/fatty acid) from 0.05 to 1 resulted in a higher ratio of LPA to PA formed, but a lower total conversion of
-glycero-3-phosphate. Increased amounts of enzyme preparation did not result in higher esterification rates, probably due to high mass-transfer limitations. 相似文献
17.
Kooijman EE Chupin V Fuller NL Kozlov MM de Kruijff B Burger KN Rand PR 《Biochemistry》2005,44(6):2097-2102
The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission. 相似文献
18.
19.
The physiologic effects of lysophosphatidic acid (LPA) remain poorly understood. Our ignorance is due in part to lack of medicinal chemistry focussed on this pleiotropic lipid mediator. Beginning with commercially available phospholipids tested on whole cells or tissues and continuing with synthetic analogs tested at recombinant LPA receptors, the features of the LPA pharmacophore have become visible. An active LPA mimetic has a long aliphatic chain terminating in a phosphate monoester; bulky substitutions at the second carbon (relative to the phosphate) are tolerated poorly and a dissociable proton near the phosphate group seems required for optimal activity. These requirements are met by substituting ethanolamine for the glyceryl group in LPA. Substitutions at the second carbon of the N-acyl ethanolamide phosphoric acid (NAEPA) result in highly active agonists, including some receptor type selective compounds, if the substituent is small (e.g. methyl, methylene amino, methylene hydroxy). However, bulky hydrophobic substituents lead to compounds with decreased agonist, or even antagonist, activities. Examination of naturally occurring plant lipids led to the discovery of another LPA receptor antagonist, di-octyl glyceryl pyrophosphate. An unexplained result obtained in testing the LPA mimetics is the strong stereoselectivity exhibited by some responses (e.g. calcium mobilization) and the lack of stereoselectivity of other responses (e.g. platelet aggregation). 相似文献
20.