首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA 3'-phosphate cyclase (Rtc) enzymes are a widely distributed family that catalyze the synthesis of RNA 2',3'-cyclic phosphate ends via an ATP-dependent pathway comprising three nucleotidyl transfer steps: reaction of Rtc with ATP to form a covalent Rtc-(histidinyl-N)-AMP intermediate and release PP(i); transfer of AMP from Rtc to an RNA 3'-phosphate to form an RNA(3')pp(5')A intermediate; and attack by the terminal nucleoside O2' on the 3'-phosphate to form an RNA 2',3'-cyclic phosphate product and release AMP. The chemical transformations of the cyclase pathway resemble those of RNA and DNA ligases, with the key distinction being that ligases covalently adenylylate 5'-phosphate ends en route to phosphodiester synthesis. Here we show that the catalytic repertoire of RNA cyclase overlaps that of ligases. We report that Escherichia coli RtcA catalyzes adenylylation of 5'-phosphate ends of DNA or RNA strands to form AppDNA and AppRNA products. The polynucleotide 5' modification reaction requires the His(309) nucleophile, signifying that it proceeds through a covalent RtcA-AMP intermediate. We established this point directly by demonstrating transfer of [(32)P]AMP from RtcA to a pDNA strand. RtcA readily adenylylated the 5'-phosphate at a 5'-PO(4)/3'-OH nick in duplex DNA but was unable to covert the nicked DNA-adenylate to a sealed phosphodiester. Our findings raise the prospect that cyclization of RNA 3'-ends might not be the only biochemical pathway in which Rtc enzymes participate; we discuss scenarios in which the 5'-adenylyltransferase of RtcA might play a role.  相似文献   

2.
The 2',3'-cyclic phosphate termini are produced, as either intermediates or final products, during RNA cleavage by many different endoribonucleases. Likewise, ribozymes such as hammerheads, hairpins, or the hepatitis delta ribozyme, generate 2',3'-cyclic phosphate ends. Discovery of the RNA 3'-terminal phosphate cyclase has indicated that cyclic phosphate termini in RNA can also be produced by an entirely different mechanism. The RNA 3'-phosphate cyclase converts the 3'-terminal phosphate in RNA into the 2',3'-cyclic phosphodiester in the ATP-dependent reaction which involves formation of the covalent cyclase-AMP and the RNA-N3' pp5' A intermediates. The findings that several eukaryotic and prokaryotic RNA ligases require the 2',3'-cyclic phosphate for the ligation of RNA molecules raised a possibility that the RNA 3'-phosphate cyclase may have an anabolic function in RNA metabolism by generating terminal cyclic groups required for ligation. Recent cloning of a cDNA encoding the human cyclase indicated that genes encoding cyclase-like proteins are conserved among Eucarya, Bacteria, and Archaea. The protein encoded by the Escherichia coli gene was overexpressed and shown to have the RNA 3'-phosphate cyclase activity. This article reviews properties of the human and bacterial cyclases, their mechanism of action and substrate specificity. Possible biological functions of the enzymes are also discussed.  相似文献   

3.
The RNA ligase RtcB splices broken RNAs with 5'-OH and either 2',3'-cyclic phosphate or 3'-phosphate ends. The 3'-phosphate ligase activity requires GTP and entails the formation of covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. There are currently two models for how RtcB executes the strand sealing step. Scheme 1 holds that the RNA 5'-OH end attacks the 3'-phosphorus of the N(3')pp(5')G end to form a 3',5'-phosphodiester and release GMP. Scheme 2 posits that the N(3')pp(5')G end is converted to a 2',3'-cyclic phosphodiester, which is then attacked directly by the 5'-OH RNA end to form a 3',5'-phosphodiester. Here we show that the sealing of a 2',3'-cyclic phosphate end by RtcB requires GTP, is contingent on formation of the RtcB-GMP adduct, and involves a kinetically valid RNA(3')pp(5')G intermediate. Moreover, we find that RtcB catalyzes the hydrolysis of a 2',3'-cyclic phosphate to a 3'-phosphate at a rate that is at least as fast as the rate of ligation. These results weigh in favor of scheme 1. The cyclic phosphodiesterase activity of RtcB depends on GTP and the formation of the RtcB-GMP adduct, signifying that RtcB guanylylation precedes the cyclic phosphodiesterase and 3'-phosphate ligase steps of the RNA splicing pathway.  相似文献   

4.
RtcB enzymes are a newly discovered family of RNA ligases, implicated in tRNA splicing and other RNA repair reactions, that seal broken RNAs with 2',3'-cyclic phosphate and 5'-OH ends. Parsimony and energetics would suggest a one-step mechanism for RtcB sealing via attack by the O5' nucleophile on the cyclic phosphate, with expulsion of the ribose O2' and generation of a 3',5'-phosphodiester at the splice junction. Yet we find that RtcB violates Occam's razor, insofar as (i) it is adept at ligating 3'-monophosphate and 5'-OH ends; (ii) it has an intrinsic 2',3'-cyclic phosphodiesterase activity. The 2',3'-cyclic phosphodiesterase and ligase reactions both require manganese and are abolished by mutation of the RtcB active site. Thus, RtcB executes a unique two-step pathway of strand joining whereby the 2',3'-cyclic phosphodiester end is hydrolyzed to a 3'-monophosphate, which is then linked to the 5'-OH end to form the splice junction. The energy for the 3'-phosphate ligase activity is provided by GTP, which reacts with RtcB in the presence of manganese to form a covalent RtcB-guanylate adduct. This adduct is sensitive to acid and hydroxylamine but resistant to alkali, consistent with a phosphoramidate bond.  相似文献   

5.
C Goffin  V Bailly    W G Verly 《Nucleic acids research》1987,15(21):8755-8771
Using synthetic oligodeoxynucleotides with 3'-OH ends and 32P-labelled 5'-phosphate ends and the technique of polyacrylamide gel electrophoresis, it is shown that, in the presence of the complementary polynucleotide, an AP (apurinic or apyrimidinic) site at the 3' or the 5' end of the labelled oligodeoxynucleotides does not prevent their ligation by T4 DNA ligase, although the reaction rate is decreased. This decrease is more severe when the AP site is at the 3' end; the activated intermediates accumulate showing that it is the efficiency of the adenyl-5'-phosphate attack by the 3'-OH of the base-free deoxyribose which is mostly perturbed. Using the same technique, it is shown that a mispaired base at the 3' or 5' end of oligodeoxynucleotides does not prevent their ligation. A one-nucleotide gap, limited by 3'-OH and 5'-phosphate, can also be closed by T4 DNA ligase although with difficulty; here again the activation of the 5'-phosphate end does not seem to be slowed down, but rather the 3'-OH attack of the adenyl-5'-phosphate. All these anomalous ligations take place with the nick or the gap in front of a continuous complementary strand. Blunt ends ligation of correct duplexes occurs readily; however an AP site or a mispaired base at the 3' or 5' end of one strand of the duplexes prevents ligation between these strands. But a missing nucleotide (responsible for one unpaired nucleotide protruding at the 3' or 5' end of the complementary strand) does not stop ligation of the shorter oligodeoxynucleotides between independent duplexes.  相似文献   

6.
Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages   总被引:1,自引:0,他引:1  
We report Zn(2+)-dependent deoxyribozymes that ligate RNA. The DNA enzymes were identified by in vitro selection and ligate RNA with k(obs) up to 0.5 min(-)(1) at 1 mM Zn(2+) and 23 degrees C, pH 7.9, which is substantially faster than our previously reported Mg(2+)-dependent deoxyribozymes. Each new Zn(2+)-dependent deoxyribozyme mediates the reaction of a specific nucleophile on one RNA substrate with a 2',3'-cyclic phosphate on a second RNA substrate. Some of the Zn(2+)-dependent deoxyribozymes create native 3'-5' RNA linkages (with k(obs) up to 0.02 min(-)(1)), whereas all of our previous Mg(2+)-dependent deoxyribozymes that use a 2',3'-cyclic phosphate create non-native 2'-5' RNA linkages. On this basis, Zn(2+)-dependent deoxyribozymes have promise for synthesis of native 3'-5'-linked RNA using 2',3'-cyclic phosphate RNA substrates, although these particular Zn(2+)-dependent deoxyribozymes are likely not useful for this practical application. Some of the new Zn(2+)-dependent deoxyribozymes instead create non-native 2'-5' linkages, just like their Mg(2+) counterparts. Unexpectedly, other Zn(2+)-dependent deoxyribozymes synthesize one of three unnatural linkages that are formed upon the reaction of an RNA nucleophile other than a 5'-hydroxyl group. Two of these unnatural linkages are the 3'-2' and 2'-2' linear junctions created when the 2'-hydroxyl of the 5'-terminal guanosine of one RNA substrate attacks the 2',3'-cyclic phosphate of the second RNA substrate. The third unnatural linkage is a branched RNA that results from attack of a specific internal 2'-hydroxyl of one RNA substrate at the 2',3'-cyclic phosphate. When compared with the consistent creation of 2'-5' linkages by Mg(2+)-dependent ligation, formation of this variety of RNA ligation products by Zn(2+)-dependent deoxyribozymes highlights the versatility of transition metals such as Zn(2+) for mediating nucleic acid catalysis.  相似文献   

7.
The steps in the biosynthetic transformation of GTP to 7,8-dihydro-D-erythro-neopterin (H2neopterin), the precursor to the modified folates found in the methanogenic archaea, has been elucidated for the first time in two members of the domain Archaea. In Methanococcus thermophila and Methanobacterium thermoautotrophicum deltaH, it has been demonstrated that H2neopterin 2':3'-cyclic phosphate is an intermediate in this conversion. In addition, the formation of the pterin ring of the H2neopterin 2':3'-cyclic phosphate is catalyzed not by a single enzyme, as is known to occur with GTP cyclohydrolase I in the Eucarya and Bacteria, but rather by two or more enzymes. A 2,4,5-triamino-4(3H)-pyrimidinone-containing molecule, most likely 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-triphosphate, has been identified as an intermediate in the formation of the H2neopterin 2':3'-cyclic phosphate. Synthetic H2neopterin 2':3'-cyclic phosphate was found to be readily hydrolyzed by cell extracts of M. thermophila via the H2neopterin 3'-phosphate to H2neopterin, a known precursor to the pterin portion of methanopterin.  相似文献   

8.
RNA 3'-terminal phosphate cyclases are a family of evolutionarily conserved enzymes that catalyze ATP-dependent conversion of the 3'-phosphate to the 2',3'-cyclic phosphodiester at the end of RNA. The precise function of cyclases is not known, but they may be responsible for generating or regenerating cyclic phosphate RNA ends required by eukaryotic and prokaryotic RNA ligases. Previous work carried out with human and Escherichia coli enzymes demonstrated that the initial step of the cyclization reaction involves adenylation of the protein. The AMP group is then transferred to the 3'-phosphate in RNA, yielding an RNA-N(3')pp(5')A (N is any nucleoside) intermediate, which finally undergoes cyclization. In this work, by using different protease digestions and mass spectrometry, we assign the site of adenylation in the E. coli cyclase to His-309. This histidine is conserved in all members of the class I subfamily of cyclases identified by phylogenetic analysis. Replacement of His-309 with asparagine or alanine abrogates both enzyme-adenylate formation and cyclization of the 3'-terminal phosphate in a model RNA substrate. The cyclase is the only known protein undergoing adenylation on a histidine residue. Sequences flanking the adenylated histidine in cyclases do not resemble those found in other proteins modified by nucleotidylation.  相似文献   

9.
Degradation of the 2'-phosphates, 3'-phosphates, 5'-phosphates, 2':3'-cyclic phosphates, 3':5'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) of adenosine, guanosine, cytidine, and uridine catalyzed by Fusarium phosphodiesterase-phosphomonoesterase was followed by means of high performance liquid chromatography. All the nucleotides were susceptible to the enzyme to a greater or lesser degree, and the kinetic constants, Km and kcat, were determined at pH 5.3 and 37 degrees C. These constants were affected by both the nucleoside moiety and the position of the phosphate. Judged from kcat/Km, the 3'-phosphates, 2':3'-cyclic phosphates, and 5'-(p-nitrophenylphosphates) were good substrates, whereas the 2'-phosphates, 5'-phosphates, and 3':5'-cyclic phosphates were poor substrates except for adenosine 2'-phosphate, adenosine 5'-phosphate, and cytidine 5'-phosphate, which were hydrolyzed relatively easily. Among the phosphodiesters, the 2':3'-cyclic phosphates of adenosine, guanosine, and cytidine; and the 3':5'-cyclic phosphates of adenosine and cytidine were degraded into nucleoside and inorganic phosphate without release of intermediary phosphomonoester into the medium. Other phosphodiesters were degraded stepwise releasing definite intermediates.  相似文献   

10.
The enzyme, RNA cyclase, has been purified from cell-free extracts of HeLa cells approximately 6000-fold. The enzyme catalyzes the conversion of 3'-phosphate ends of RNA chains to the 2',3'-cyclic phosphate derivative in the presence of ATP or adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and Mg2+. The formation of 1 mol of 2',3'-cyclic phosphate ends is associated with the disappearance of 1 mol of 3'-phosphate termini and the hydrolysis of 1 mol of ATP gamma S to AMP and thiopyrophosphate. No other nucleotides could substitute for ATP or ATP gamma S in the reaction. The reaction catalyzed by RNA cyclase was not reversible and exchange reactions between [32P]pyrophosphate and ATP were not detected. However, an enzyme-AMP intermediate could be identified that was hydrolyzed by the addition of inorganic pyrophosphate or 3'-phosphate terminated RNA chains but not by 3'-OH terminated chains or inorganic phosphate. 3'-[32P](Up)10Gp* could be converted to a form that yielded, (Formula: see text) after degradation with nuclease P1, by the addition of wheat germ RNA ligase, 5'-hydroxylpolynucleotide kinase, RNA cyclase, and ATP. This indicates that the RNA cyclase had catalyzed the formation of the 2',3'-cyclic phosphate derivative, the kinase had phosphorylated the 5'-hydroxyl end of the RNA, and the wheat germ RNA ligase had catalyzed the formation of a 3',5'-phosphodiester linkage concomitant with the conversion of the 2',3'-cyclic end to a 2'-phosphate terminated residue.  相似文献   

11.
The thiol-activated neocarzinostatin chromophore cleaves duplex oligonucleotides containing the sequence-TGTTTGA-, producing 3'-phosphoglycolate and 3'-phosphate fragments at T, indicating the involvement of 4'- as well as 5'-chemistry at this residue. Substitution of deuterium for hydrogen at the C-4' position of the affected T leads to a kinetic isotope effect (kH/kD) of 4.0 on the formation of the glycolate-ended product, whereas deuterium at C-5' of the same T reveals kH/kD of 1.6 in the formation of the phosphate-ended product. The proportion of the products representing 4'- and 5'-chemistry can be shifted on the basis of isotope selection effects. A second product resulting from 4'-chemistry, the abasic site associated with 4'-hydroxylation, has been identified as an alkali-labile site, and as a pyridazine derivative formed after cleavage by hydrazine. A comparable isotope effect on its production (kH/kD = 3.7) relative to that of 3'-phosphoglycolate production is consistent with a common intermediate, a putative 4'-peroxy radical, in their formation. The formation of both products of 4'-chemistry is oxygen-dependent, and the internal partitioning between them (3'-phosphate or 3'-phosphoglycolate) is influenced by thiols. Moreover, the nitroaromatic radiation sensitizer misonidazole can substitute for dioxygen, yielding 3'-phosphoglycolate and alkali-labile 3'-phosphate ends, indicative of 4'-chemistry. In addition to the internal partitioning of 4'-chemistry, thiols also affect the overall extent of cleavage (4' plus 5') and the relative partitioning between both sites of attack (4' or 5').  相似文献   

12.
A series of representative derivatives of guanosine cyclic 3',5'-phosphate (cGMP) and inosine cyclic 3',5'-phosphate (cIMP) which contained modifications in either the 2' position or the 8 and 2' positions were synthesized. Three types of derivatives were investigated: (1) derivatives in which the 2' position has been altered to produce a 2'-deoxynucleoside cyclic 3',5'-phosphate or a 9-beta-D-arabinofuranosylpurine cyclic 3',5'-phosphate; (2) 2'-omicron-acyl derivatives; and (3) doubly modified derivatives containing a 2' modification [as in (1) and (2)] and an 8-substitution. 2'-Deoxyinosine cyclic 3',5'-phosphate and 9-beta-D-arabinofuranosylhypoxanthine cyclic 3',5'-phosphate were obtained by HNO2 deamination of 2'-deoxyadenosine cyclic 3',5'-phosphate and 9-beta-D-arabinofuranosyladenine cyclic 3',5'-phosphate (ara-cAMP), respectively. Treatment of 8-bromo-2'-omicron-(p-toluenesulfonyl) adenosine cyclic 3',5'-phosphate with NaSH yielded the intermediate 8,2'-anhydro-9-beta-D-arabinofuranosyl-8-mercaptoadenine cyclic 3',5-phosphate, which was converted directly to 2'-deoxyadenosine cyclic 3',5'-phosphate (dcAMP) by treatment with Raney nickel. 8-Bromo-2'-omicron-(p-toluenesulfonyl) guanosine cyclic 3',5'-phosphate was converted to 8,2'-anhydro-9-beta-D-arabinofuranosyl-8-mercaptoguanine cyclic 3',5'-phosphate, and the latter was desulfurized with Raney nickel to give 2-deoxyguanosine cyclic 3',5'-phosphate. Ara-cAMP, 9-beta-D-arabinofuranosylguanine cyclic 3',5'-phosphate, and 9-beta-D-arabinofuranosyl-8-mercaptoguanine cyclic 3',5'-phosphate have been previously reported (Mian et al. (1974), J. Med. Chem. 17, 259). 8-Bromo-2'-omicron-acetylinosine cyclic 3',5'-phosphate and 8-[(p-chlorophenyl)thio]-2'-omicron-acetylinosine cyclic 3',5'-phosphate were produced by acylation of 8-bromoinosine cyclic 3',5'-phosphate and 8-[(p-chlorophenyl)thio]inosine cyclic 3',5'-phosphate, respectively; while 8-bromo-2'-omicron-butyrylguanosine cyclic 3',5'-phosphate was synthesized by bromination of 2'-omicron-butyrylguanosine cyclic 3',5'-phosphate.  相似文献   

13.
The endoribonuclease VI from Artemia larvae is non-competitively inhibited by cytidine 2'-phosphate with a Ki ca 1 microM. Neither of the cytidine monophosphates isomers with the phosphate group in the 3' or 5' position nor the cyclic 2':3' phosphate are inhibitors at concentrations up to 100 microM. Adenosine, guanosine and uridine 2' or 3' phosphates are also ineffective in this range of concentrations. Certain polyribonucleotides are potent competitive inhibitors of the ribonuclease activity.  相似文献   

14.
Novel RNA polymerization reaction catalyzed by a group I ribozyme.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have converted a bacterial tRNA precursor containing a 205 nt self-splicing group I intron into a RNA enzyme that catalyzes polymerization of an external RNA substrate. The reaction involves transesterification steps analogous to both the forward and reverse exon ligation steps of group I splicing; as such it depends entirely on 3' splice site reactions. The RNA substrate is a 20 nt analogue of the ligated exons (E1.E2), whose 3' end resembles the 3' terminus of the intron RNA enzyme (IVS). The splice junction of the substrate is attacked by the 3' end of the intron, then the molecule displaces the original 3' terminal guanosine so that the new 3' terminus is brought into the active site and used as the attacking nucleophile in the next reaction. Polymerization occurs via a series of covalent enzyme-linked intermediates of the structure IVS.(E2)n, where n = 1 to > or = 18. The 5' exon accumulates during the course of the reaction and can attack the covalent intermediates to produce elongation products of structure E1.(E2)n, regenerating the intron RNA enzyme in unchanged form. In this manner, the enzyme converts 20 nt oligoribonucleotides into polyribonucleotides up to at least 180 nt by 10 nt increments. These results have significant implications for the evolution of RNA-based self-replicating systems.  相似文献   

15.
A large number of biochemical and genetic studies have demonstrated the involvement of DNA polymerase beta (Pol beta) in mammalian base excision repair (BER). Pol beta participates in BER sub-pathways by contributing gap filling DNA synthesis and lyase removal of the 5'-deoxyribose phosphate (dRP) group from the cleaved abasic site. To better understand the mechanism of the dRP lyase reaction at an atomic level, we determined a crystal structure of Pol beta complexed with 5'-phosphorylated abasic sugar analogs in nicked DNA. This DNA ligand represents a potential BER intermediate. The crystal structure reveals that the dRP group is bound in a non-catalytic binding site. The catalytic nucleophile in the dRP lyase reaction, Lys72, and all other potential secondary nucleophiles, are too far away to participate in nucleophilic attack on the C1' of the sugar. An approximate model of the dRP group in the expected catalytic binding site suggests that a rotation of 120 degrees about the dRP 3'-phosphate is required to position the epsilon-amino Lys72 close to the dRP C1'. This model also suggests that several other side chains are in position to facilitate the beta-elimination reaction. From results of mutational analysis of key residues in the dRP lyase active site, it appears that the substrate dRP can be stabilized in the observed non-catalytic binding conformation, hindering dRP lyase activity.  相似文献   

16.
Desai KK  Raines RT 《Biochemistry》2012,51(7):1333-1335
The RNA ligase RtcB is conserved in all domains of life and is essential for tRNA maturation in archaea and metazoa. Here we show that bacterial and archaeal RtcB catalyze the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini. Reactions with analogues of RNA and GTP suggest a mechanism in which RtcB heals the 3'-phosphate terminus by forming a 2',3'-cyclic phosphate before joining it to the 5'-hydroxyl group of a second RNA strand. Thus, RtcB can ligate RNA cleaved by RNA endonucleases, which generate 2',3'-cyclic phosphate and then 3'-phosphate termini on one strand, and a 5'-hydroxyl terminus on another strand.  相似文献   

17.
Splicing of yeast tRNA precursors: structure of the reaction intermediates.   总被引:37,自引:0,他引:37  
G Knapp  R C Ogden  C L Peebles  J Abelson 《Cell》1979,18(1):37-45
The intermediates of the yeast tRNA splicing reaction have been characterized. The intervening sequence is excised as an unique linear molecule. It has 5'-hydroxyl and 3'-phosphate termini. Correspondingly, the half-tRNA molecules are shown to have a 3'-phosphate terminus on the 5' half and 5'-hydroxyl terminus on the 3' half. These isolated halves have been shown to be active in the ligation step of tRNA splicing. Removal of the 3'-phosphate from the 5' half eliminates the ability of the 5' half to participate in ligation.  相似文献   

18.
The pathway of riboflavin (vitamin B2) biosynthesis is significantly different in archaea, eubacteria, fungi and plants. Specifically, the first committed intermediate, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate, can either undergo hydrolytic cleavage of the position 2 amino group by a deaminase (in plants and most eubacteria) or reduction of the ribose side chain by a reductase (in fungi and archaea). We compare 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate synthases from the yeast Candida glabrata, the archaeaon Methanocaldococcus jannaschii and the eubacterium Aquifex aeolicus. All three enzymes convert 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate into 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate, as shown by 13C-NMR spectroscopy using [2,1',2',3',4',5'-13C6]2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate as substrate. The beta anomer was found to be the authentic substrate, and the alpha anomer could serve as substrate subsequent to spontaneous anomerisation. The M. jannaschii and C. glabrata enzymes were shown to be A-type reductases catalysing the transfer of deuterium from the 4(R) position of NADPH to the 1' (S) position of the substrate. These results are in agreement with the known three-dimensional structure of the M. jannaschii enzyme.  相似文献   

19.
Purification of a RNA debranching activity from HeLa cells   总被引:6,自引:0,他引:6  
The splicing of messenger RNA precursors (pre-mRNA) of eukaryotic cells involves the formation of a branched RNA intermediate known as a RNA lariat. This structure is formed in the first step of the reaction when a cleavage at the 5' splice site generates the 5' exon and a RNA species containing the intron and 3' exon in which the phosphate moiety at the 5' end of the intron is forming a 2'-5' phosphodiester bond with the 2'-hydroxyl moiety of a specific adenine residue near the 3' end of the intron forming a RNA branch with the following structure: -pA2'-pX-3'-pZ-. We have purified a debranching activity approximately 700-fold from the cytosolic fraction of HeLa cells. This activity catalyzes the hydrolysis of the 2'-5' phosphodiester bond of branched RNA structures yielding a 5'-phosphate end and a 2'-hydroxyl group at the branch attachment site. The activity possessed a sedimentation coefficient of 3.5 S. The reaction catalyzed by the purified fraction requires a divalent cation and is optimal at pH 7.0. The purified activity can efficiently hydrolyze triester trinucleotide structures (pY2'-pX-3'-pZ-) prepared by digestion of RNA lariats with nuclease P1. In contrast, a 2' phosphate monoester product (-pG2'-p 3'-pC-), formed by the wheat germ RNA ligase, was not attacked.  相似文献   

20.
Steric and chemical evidence had previously shown that residues Lys-7 and/or Arg-10 of bovine pancreatic RNAase A could belong to the p2 phosphate-binding subsite, adjacent to the 3' side of the main site p1. In the present work chemical modification of the enzyme with pyridoxal 5'-phosphate and cyclohexane-1,2-dione was carried out in order to identify these residues positively as part of the p2 site. The reaction with pyridoxal 5'-phosphate yields three monosubstituted derivatives, at Lys-1, Lys-7 and Lys-41. A strong decrease in the yield of derivatives at Lys-7 and Lys-41 was observed when either p1 or p2 was specifically blocked by 5'-AMP or 3'-AMP respectively. These experiments indicate that both sites are needed for the reaction of pyridoxal 5'-phosphate with RNAase A to take place. The positive charge in one of the sites interacts with the phosphate group of pyridoxal 5'-phosphate, giving the proper orientation to the carbonyl group, which then reacts with the lysine residue present in the other site. The absence of reaction between pyridoxal 5'-phosphate and an RNAase derivative that has the p2 site blocked supports this hypothesis. Labelling of Lys-7 with pyridoxal 5'-phosphate has a more pronounced effect on the kinetics with RNA than with the smaller substrate 2',3'-cyclic CMP. In addition, when the phosphate moiety of the 5'-phosphopyridoxyl group was removed with alkaline phosphatase the kinetic constants with 2',3'-cyclic CMP returned to values very similar to those of the native enzyme, whereas a higher Km and lower Vmax. were still observed for RNA. This indicates that this new derivative has recovered a free p1 site and, hence, the capability to act on 2',3'-cyclic CMP, but the presence of the pyridoxyl group bound to Lys-7 is still blocking a secondary phosphate-binding site, namely p2. Finally, reaction of cyclohexane-1,2-dione at Arg-10 is suppressed in the presence of 3'-AMP but only a 19% decrease is observed with 5'-AMP, suggesting that Arg-10 is also close to the p2 phosphate-binding subsite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号