首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Human erythrocytes were labeled with stearic acid spin labels, and no change was detected in membrane fluidity under hyperosmotic stress, going from isotonicity to about 3000 mOsm. Intact erythrocytes labeled with an androstane spin label and submitted to simulation of freezing show the onset of irreversible structural breakdown occurring in a saline solution at 2,000 mOsm. Ghosts labeled with maleimide spin label (4-maleimide-2,2,6,6-tetramethylpiperidinooxyl) when submitted to solutions of increasing osmolalities (pH 7.4), exhibit protein conformational changes that are irreversible after a simulated freeze-thaw cycle. After sonication of maleimide spin-labeled ghosts, membrane buried sulfhydryl groups become exposed. Such preparations showed behavior similar to the unsonicated when in saline hyperosmolal medium (pH 7.4). Such results suggest the ionic strength of the medium as the determining factor of the detected conformational changes. Maleimide spin-labeled ghosts in 300 mOsm saline solution (pH 7.4) were treated with ascorbic acid (spin destruction of nitroxides), and the kinetic analysis indicates that 65% of the labeled sites are located at the external interface of the membrane or in hydrophilic channels. Deformation and rearrangements of membrane components in solutions of increasing osmolalities apparently are related to protein conformational changes, on the outside surface of erythrocyte membranes, with a significant amount being structurally dissociated of lipids.  相似文献   

2.
The effect of radiation-induced peroxidation on the fluidity of the phospholipids of the erythrocyte membrane was studied using both erythrocyte ghosts and liposomes formed from the polar lipids of erythrocytes. In liposomes, the oxidation of the phospholipids increased with radiation dose, but there was no change in the fluidity of the lipids as measured by spin-label motion. Under the same conditions of irradiation, no oxidation of phospholipid was detected in erythrocyte ghosts, although changes occurred in the motion of spin labels intercalated with the membrane. These changes were attributed to radiation-induced alterations in the membrane proteins. It is concluded that alterations in motion of spin labels, observed with intact membranes after irradiation, are most likely the result of changes in the structure of membrane proteins rather than the lipids.  相似文献   

3.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d=6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 degrees C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 degrees C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

4.
Sickle cell erythrocytes exhibit reduced carboxyl methylation of membrane proteins compared to normal erythrocytes. This altered methylation in sickle membrane proteins is also observable when extracted membranes, both intact and alkali treated, were used as substrates for the homologous protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC. 2.1.1.24). However, when glycophorin A, one of the major methyl acceptors in both membranes, was extracted by lithium diiodosalicylate and used as the methyl acceptor, the proteins from both membranes were methylated equally, suggesting an involvement of membrane structure in membrane-bound protein methylation. Merocyanine 540 (MC-540), a fluorescent probe, was used to determine if the membranes differed in organization. Incubation of both normal and sickle erythrocytes membranes with MC-540 produced a marked increase in extrinsic fluorescence, reflecting a relatively nonpolar environment for the dye bound to the membranes. The fluorescence from sickle cell ghosts was only 87% as intense as that from normal ghosts, while the actual amount of MC-540 associated with sickle cell membranes was only 62% of normal. These data suggest that differences exist in the distribution of surface charges on these plasma membranes. These results are consistent with the hypothesis that abnormal levels of membrane protein methylation observed in sickle erythrocytes may be a result of abnormal membrane organization characteristic to sickle cell anemia.  相似文献   

5.
The diversity in structures and physical properties of lipids provides a wide variety of possible interactions with proteins that affect their assembly, organization, and function either at the surface of or within membranes. Because lipids have no catalytic activity, it has been challenging to define many of their precise functions in vivo in molecular terms. Those processes responsive to lipids are attuned to the native lipid environment for optimal function, but evidence that lipids with similar properties or even detergents can sometimes partially replace the natural lipid environment has led to uncertainty as to the requirement for specific lipids. The development of strains of microorganisms in which membrane lipid composition can be genetically manipulated in viable cells has provided a set of reagents to probe lipid functions. These mutants have uncovered previously unrecognized roles for lipids and provided in vivo verification for putative functions described in vitro. In this review, we summarize how these reagent strains have provided new insight into the function of lipids. The role of specific lipids in membrane protein folding and topological organization is reviewed. The evidence is summarized for the involvement of anionic lipid-enriched domains in the organization of amphitropic proteins on the membrane surface into molecular machines involved in DNA replication and cell division.  相似文献   

6.
We provide an overview of lipid-dependent polytopic membrane protein folding and topogenesis. Lipid dependence of this process was determined by employing Escherichia coli cells in which specific lipids can be eliminated, substituted, tightly titrated or controlled temporally during membrane protein synthesis and assembly. The secondary transport protein lactose permease (LacY) was used to establish general principles underlying the molecular basis of lipid-dependent effects on protein domain folding, protein transmembrane domain (TM) orientation, and function. These principles were then extended to several other secondary transport proteins of E. coli. The methods used to follow proper conformational organization of protein domains and the topological organization of protein TMs in whole cells and membranes are described. The proper folding of an extramembrane domain of LacY that is crucial for energy dependent uphill transport function depends on specific lipids acting as non-protein molecular chaperones. Correct TM topogenesis is dependent on charge interactions between the cytoplasmic surface of membrane proteins and a proper balance of the membrane surface net charge defined by the lipid head groups. Short-range interactions between the nascent protein chain and the translocon are necessary but not sufficient for establishment of final topology. After release from the translocon short-range interactions between lipid head groups and the nascent protein chain, partitioning of protein hydrophobic domains into the membrane bilayer, and long-range interactions within the protein thermodynamically drive final membrane protein organization. Given the diversity of membrane lipid compositions throughout nature, it is tempting to speculate that during the course of evolution the physical and chemical properties of proteins and lipids have co-evolved in the context of the lipid environment of membrane systems in which both are mutually dependent on each other for functional organization of proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

7.
Cross-linking of phospholipids to proteins in the erythrocyte membrane   总被引:3,自引:0,他引:3  
Erythrocytes treated with the cross-linking agents difluorodinitrobenzene and suberimidate are rendered refractory to lysis. When ghosts are treated with these reagents 8.4% and 2.3% of the total lipid phosphate is cross-linked to protein by difluorodinitrobenzene and suberimidate respectively. This represents 20 and 5.8% of the amino-phospholipids. The lipids extracted from treated ghosts do not react with ninhydrin as do lipids extracted from control ghosts. Thus essentially all the amino-phospholipids of the ghosts react with these cross-linking agents and up to 20% becomes cross-linked to proteins.  相似文献   

8.
The structure of cell membranes has been intensively investigated and many models and concepts have been proposed for the lateral organization of the plasma membrane. While proteomics and lipidomics have identified many if not all membrane components, how lipids and proteins interactions are coordinated in a specific cell function remains poorly understood. It is generally accepted that the organization of the plasma membrane is likely to play a critical role in the regulation of cell function such as receptor signalling by governing molecular interactions and dynamics. In this review we present different plasma membrane models and discuss microscopy approaches used for investigating protein behaviour, distribution and lipid organization.  相似文献   

9.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d = 6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 °C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 °C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

10.
The complex mixture of lipids and proteins of the red blood cell membrane is well maintained during the life of the cell. Lipid analysis of the red cell reveals hundreds of phospholipid molecular species and cholesterol that differ with respect to their (polar) head group, and (apolar) side chains. These molecules move rapidly in the plane, as well as across the lipid bilayer. This dynamic movement is highly organized. In the plane of the bilayer, areas enriched in certain lipids accommodate protein structure and modulate function. While lipids move across the bilayer, the organization is highly asymmetric. Amino phospholipids are mainly found on the inside and choline containing phospholipids on the outside. Both the composition and organization of the red cell membrane is maintained throughout the life of the red cell by an intricate mechanism that involves enzymes, transporters and cytosolic factors. Key proteins that maintain red blood cell lipid organization have recently been identified. Alterations in these mechanisms, as the result of the globin mutations in sickle cell disease or thalassemia will lead to loss of membrane viability, apoptosis during erythropoiesis, early demise of the cell in the circulation, and when these cells are not removed appropriately their presence has pathologic consequences.  相似文献   

11.
Summary 1-Fluoro-2,4-dinitrobenzene (FDNB) has been used to study the availability of amino-containing phospholipids in erythrocyte membranes and ghosts in an aqueous, isotonic medium. It was found that the addition of bovine serum albumin (BSA) to the medium protects the cells from cation leak and protects some of the amino-phospholipids from reacting with the probe. In isotonic medium without BSA, 46% of the phosphatidylethanolamine and 12% of the phosphatidylserine of erythrocytes and 73% and 21% of these respective lipids of ghosts react with the probe. In the presence of 70 m BSA, 31% of phosphatidylethanolamine and 6.5% of phosphatidylserine of erythrocytes and 59% and 16% of these respective lipids of ghosts react with the probe. The labeling of these lipids does not change under conditions of varying tonicity, or after treatment of erythrocytes with pronase or lysolecithin. The data suggest that 46% of phosphatidylethanolamine and 12% of phosphatidylserine of the erythrocyte membrane are free in a lipid bilayer; 27% and 9% of these respective lipids are loosely bound to proteins which are lost during the preparation of ghosts and 27% of the phosphatidylethanolamine and 79% of the phosphatidylserine are tightly bound to core proteins which remain part of the erythrocyte membrane even after hemolysis.  相似文献   

12.
Using a highly sensitive scanning calorimeter, the thermally induced structural transitions of erythrocyte ghosts from normal individuals and from patients with Duchenne muscular dystrophy (DMD) were carefully examined. No differences were observed under a variety of conditions. This finding is consistent with the idea that the composition, structure, and organization of membrane proteins and lipids in DMD erythrocyte membranes is very similar to normal erythrocyte membranes, in contrast to many other reports in the literature which utilized different techniques.  相似文献   

13.
Phospholipid asymmetry in human erythrocyte ghosts   总被引:6,自引:0,他引:6  
Using phospholipase digestion and the fluorescent probe merocyanine 540 the maintenance of phospholipid asymmetry in the plasma membrane of human erythrocyte ghosts was investigated. Digestion with phospholipase A2 indicated that ghosts prepared in the presence of Mg++ as the only divalent cation retained the normal phospholipid asymmetry characteristic of intact erythrocytes. These ghosts, like normal erythrocytes, also failed to stain with merocyanine 540. However, the presence of as little as 5-10 microM Ca++ during ghost preparation resulted in ghosts in which lipid asymmetry had been abolished, as indicated by phospholipase digestion. Moreover, these ghosts stained with merocyanine 540. In contrast to ghosts, intact erythrocytes treated with ionophore required millimolar levels of Ca++ ions to disrupt membrane lipid asymmetry. To discover the reason for this difference in behavior between ghosts and intact cells, ghosts were prepared from preswollen cells using only small volumes of buffer for lysis. These experiments demonstrated that as the cellular contents of erythrocytes are diluted, the asymmetric arrangement of phospholipids becomes more sensitive to disruption by Ca++.  相似文献   

14.
L W Fung  M S Ostrowski 《Life sciences》1984,35(20):2071-2078
Our earlier spin label electron paramagnetic resonance (EPR) studies of hereditary spherocytosis (HS) erythrocyte revealed the existence of structural alteration(s) when the membrane is subjected to heat stress. We have now used saturation transfer EPR to show restricted motion in membrane proteins even without subjecting membrane to stress. The abnormal motional behavior is amplified when membranes are incubated at 47 degrees C and is readily detectable by conventional EPR. Gel electrophoresis and lipid assays show that proteins but not lipids are released upon heating. Thus, the more restricted motions in HS membranes may be due to a different membrane protein organization, ultimately resulting in the abnormal morphology of HS cells.  相似文献   

15.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   

16.
Quinolinic acid (2,3-pyridinedicarboxylic acid), an endogenous, tryptophan metabolite, is neurotoxic when injected into rat striatum (1). To begin to investigate the molecular interactions of quinolinic acid with membranes, electron spin resonance studies of the effects of this neurotoxin on the physical state of lipids, proteins, and cell-surface sialic acid in human erythrocyte ghosts have been performed. Quinolinic acid induced a highly significant alteration in the physical state of membrane proteins (P less than 0.01) while that of sialic acid and membrane lipids was unaffected. These results are similar to those induced by ibotenic acid, an exogenous neurotoxin, and are discussed with reference to possible molecular characteristics of the interaction of these neurotoxins with membrane proteins.  相似文献   

17.
The in vitro influence of external electrostatic fields with 200 kV/m tension on the biophysical parameters of the erythrocyte membranes and their ghosts of white outbred rats was studied. The investigation on the parameters of erythrocyte membranes and their ghosts, particularly, their microviscosity, the amount and degree of membrane proteins submersion in lipids, polarity in depth of the membrane bilayer and its viscosity was carried out by the spectrofluorimeteric method using pyrene as a hydrophobic fluorescent probe. The analyses of literature data, findings of the current study and their comparison with the results of our previous works allow of concluding that the in vitro influence of external electrostatic fields with 200 kV/m tension on the erythrocyte membranes and their ghosts occurs at different sites of membrane. It is shown that the preliminary exposure of erythrocytes in external electrostatic fields leads to the changes of the parameters both of a membrane surface layer and the intra-membrane domains. So, the decrease in the strength of peripheral proteins binding to the erythrocyte membranes and the increase in the microviscosity of the lipid bilayer are observed. The influence of the field on the ghosts of intact erythrocytes results in alterations of the studied parameters only of the membrane surface.  相似文献   

18.
The concentration of lipid-soluble, chain-breaking antioxidants in human plasma and in erythrocyte ghosts have been determined for the first time by an inhibited-autoxidation method. The results are very similar to the concentrations of vitamin E measured for the same blood components by the HPLC method. It is concluded that vitamin E, which is largely present as alpha-tocopherol, is the only significant lipid-soluble, chain-breaking type of antioxidant present in human blood. The concentration of vitamin E in the plasma lipids divided by the concentration of vitamin E in the ghost membrane lipids is approximately a constant despite the large differences in vitamin E-intake and in plasma lipid concentrations in different individuals. Vitamin E/lipid ratios for plasma and ghosts were larger for subjects taking a supplement of alpha-tocopherol acetate of 100 IU per week, compared to nonsupplemented subjects (based on data from a limited number of subjects). A larger supplement of 2800 IU per week did not significantly increase the vitamin E/lipid ratios.  相似文献   

19.
Our understanding of the plasma membrane structure has undergone a major change since the proposal of the fluid mosaic model of Singer and Nicholson in the 1970s. In this model, the membrane, composed of over thousand lipid and protein species, is organized as a well‐equilibrated two‐dimensional fluid. Here, the distribution of lipids is largely expected to reflect a multicomponent system, and proteins are expected to be surrounded by an annulus of specialized lipid species. With the recognition that a multicomponent lipid membrane is capable of phase segregation, the membrane is expected to appear as patchwork quilt pattern of membrane domains. However, the constituents of a living membrane are far from being well equilibrated. The living cell membrane actively maintains a trans‐bilayer asymmetry of composition, and its constituents are subject to a number of dynamic processes due to synthesis, lipid transfer as well as membrane traffic and turnover. Moreover, membrane constituents engage with the dynamic cytoskeleton of a living cell, and are both passively as well as actively manipulated by this engagement. The extracellular matrix and associated elements also interact with membrane proteins contributing to another layer of interaction. At the nano‐ and mesoscale, the organization of lipids and proteins emerge from these encounters, as well as from protein–protein, protein–lipid, and lipid–lipid interactions in the membrane. New methods to study the organization of membrane components at these scales have also been developed, and provide an opportunity to synthesize a new picture of the living cell surface as an active membrane composite.  相似文献   

20.
Characterization of membranes and of biological processes occurring within membranes is essential for understanding fundamental cellular behavior. Here we present a detailed biophysical study of a recently developed colorimetric biomimetic membrane assembly constructed from physiological lipid molecules and conjugated polydiacetylene. Various analytical techniques have been applied to characterize the organization of the lipid components in the chromatic vesicles and their contributions to the observed blue-to-red color transitions. Experiments reveal that both the polymerized units as well as the lipids exhibit microscopic phases and form domains whose properties and bilayer organization are interdependent. These domains are interspersed within mixed lipid/polymer vesicles that have a size distribution different from those of aggregates of the individual molecular constituents. The finding that fluidity changes induced within the lipid domains are correlated with the chromatic transitions demonstrates that the colorimetric platform can be used to evaluate the effects of individual molecular components, such as negatively charged lipids and cholesterol, upon membrane fluidity and thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号