首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When superhelical DNA (RFI)2 of phages φX174 or G4 takes up a homologous single-stranded fragment, RF DNA and fragment are linked by as many as 300 base-pairs, and a corresponding length of one strand of the RFI is displaced, forming a displacement loop (D-loop). The length of the base-paired region was estimated from the fraction of the associated 32P-labeled fragment that was resistant to digestion by exonuclease VII, as well as by electron microscopy. Dissociation of the fragment by heating was characterized by a sharp melting curve. The displaced strand of the RF DNA was digested by two endonucleases that act on single-stranded DNA, the S1 nuclease of Aspergillus oryzae and the recBC DNAase of Escherichia coli. Acting on complexes, both enzymes converted the form I [3H]DNA into form II DNA, and left some of the associated 32P-labeled fragment undigested. The remaining 32P-labeled fragment could no longer be displaced by branch migration, as expected if the displaced strand of the RF DNA were digested. The action of S1 nuclease also produced the amount of acid-soluble 3H expected from digestion of the D-loop. Treatment of such digested complexes with polynucleotide ligase covalently linked about 35% of the remaining 32P-labeled fragment to 3H-labeled strands, which proves that S1 nuclease digested the D-loop.  相似文献   

2.
The relaxation site of ColE1 has been located within the restriction fragment HpaII L, which is 148 base-pairs in length. Restriction mapping data indicate that the relaxation nick (the presumptive origin of transfer) of ColE1 is located at a distance of 250 to 300 nucleotides away from the replication origin, downstream in the direction of replication. This result is consistent with the observation made by Inselburg (1977), that the relaxation phenomenon probably does not play a direct role in vegetative replication of ColE1. The sequence of 185 nucleotides surrounding the relaxation site has been determined and this contains a translational symmetry and several 2-fold rotational symmetries. These symmetric elements may be recognition sites for proteins involved in the conjugal transfer of ColE1. The sequence further demonstrates that the relaxation site, unlike the cis A nicking site of φX174, is located in an intercistronic region. The site of the relaxation break has a 2-fold rotational symmetry.  相似文献   

3.
The mitochondrial genetic locus oxi 1 contains the structural gene for subunit II of Cytochrome c oxidase. In this study, the oxi 1 locus, or at least a major portion of it, has been localized to a 2·4 kb2 HpaII fragment of mitochondrial DNA, by examining the mtDNA of oxi 1 mutants, and rho? yeast strains that selectively retained in amplified form, this region of the mitochondria) genome. The 2·4 kb fragment is missing from the mtDNA of an oxi 1 locus deletion mutant, but is present in the mtDNAs retained by two rho? strains that genetically recombine with all 16 oxi 1 mutants tested, to produce respiring progeny. Two other rho? strains, that retained different but overlapping portions of the oxi 1 locus as determined genetically, contained mtDNAs consisting of “cloned” segments derived from within the 2·4 kb fragment: these rho? mtDNAs hybridized only to the 2·4 kb HpaII fragment of wild-type mtDNA and could not be cleaved with HpaII. Furthermore, these two rho? mtDNAs were found to correspond to sequences from opposite sides of the 2·4 kb fragment that overlap for 100 to 300 base-pairs near the middle of the fragment. Thus, five oxi 1 mutations that recombine with both of these rho? strains could be further localized to this relatively short region of overlap. One such mutation, of particular interest because it produces an altered form of subunit II, was shown to lie on a 75-base-pair fragment that maps in this region of the overlap. The 75-base-pair fragment from the mutant migrates slightly faster during electrophoresis than the corresponding wild-type fragment. In contrast, the mobility of the fragment from a spontaneous revertant was indistinguishable from wild type.  相似文献   

4.
Summary Replication and incompatibility properties in Escherichia coli of DNA segments from the replication origin region of plasmid RK2 have been investigated. A 393 bp HpaII fragment, derived from the region of the RK2 origin of replication, carries an active origin when essential RK2 encoded functions are provided in trans and will form a mini RK2 replicon when linked to a non-replicating selective fragment. This small ori RK2 plasmid cannot stably coexist with other functional RK2 replicons and is thus incompatible with RK2 replicons. However, the 393 bp ori RK2 segment when cloned into a high copy number plasmid, where plasmid maintenance is no longer dependent on ori RK2, does not interfere with maintenance of a resident RK2 replicon. This is in contrast to larger segments from the origin region that, when cloned at high copy number, cause the loss of a resident RK2 replicon. The apparent ability of the small HpaII oriRK2 plasmid to displace resident RK2 replicons may indicate the turning on of one incompatibility mechanism only when replication from ori RK2is required or may simply reflect the strong selective pressure for establishment of the incoming ori RK2 plasmid and poor ability of the HpaII ori RK2 plasmid to replicate in the presence of another RK2 replicon. The incompatibility expressed by the functional HpaII ori RK2 may be designated inc 1. The activity of a segment of RK2, cloned at high copy number, to eliminate a resident RK2 plasmid has been localized to a region of RK2 DNA, designated the inc 2 region, to distinguish it from inc 1, above, that overlaps but does not coincide with the 393 bp HpaII ori RK2. This inc 2 region also appears to be involved in segregation of RK2 derivatives since removal of a portion of this region results in both higher copy number and increased instability of the RK2 derivative. In addition to defining the region of the RK2 origin of replication, these results indicate that the ability to eliminate a resident RK2 replicon can be expressed by fragments, cloned at high copy number, that do not contain the complete ori RK2. Also, only part of the inc 2 region that appears to be responsible for efficient elimination of RK2 replicons by fragments cloned at high copy number is required for ori RK2.  相似文献   

5.
Using 5 end-labeled nascent strands of tobacco chloroplast DNA (ctDNA) as a probe, replication displacement loop (D-loop) regions were identified. The strongest hybridization was observed with restriction fragments containing the rRNA genes from the inverted repeat region. Two-dimensional gel analysis of various digests of tobacco ctDNA suggested that a replication origin is located near each end of the 7.1 kb BamHI fragment containing part of the rRNA operon. Analysis of in vitro replication products indicated that templates from either of the origin regions supported replication, while the vector alone or ctDNA clones from other regions of the genome did not support in vitro replication. Sequences from both sides of the BamHI site in the rRNA spacer region were required for optimal in vitro DNA replication activity. Primer extension was used for the first time to identify the start site of DNA synthesis for the D-loop in the rRNA spacer region. The major 5 end of the D-loop was localized to the base of a stem-loop structure which contains the rRNA spacer BamHI site. Primer extension products were insensitive to both alkali and RNase treatment, suggesting that RNA primers had already been removed from the 5 end of nascent DNA. Location of an origin in the rRNA spacer region of ctDNA from tobacco, pea and Oenothera suggests that ctDNA replication origins may be conserved in higher plants.  相似文献   

6.
Fine structure of polyoma virus DNA.   总被引:7,自引:0,他引:7  
A fine structure map of polyoma DNA has been made based on cleavage with a number of restriction endonucleases (including HaeII and III, BamI, HindII and III, BumI, HpaII, and in part, HphI) and depurination of wild-type DNA, the eight HpaII restriction fragments and some HaeIII fragments. This analysis has made possible some correlation with simian virus 40 DNA, and has facilitated detailed examination of various polyoma strains and variants. Sequences from the region of the origin of DNA replication have been examined.  相似文献   

7.
Methylation changes in the DNA of Myxococcus xanthus were studied using a twodimensional DNA electrophoresis technique in which one-dimensional polyacrylamide separations of HpaII digests of DNA extracted from different stages of development were re-digested in situ with MspI and then run in a second dimension. Specific methylation events were seen to be associated with the slowing down of cell growth as vegetative cells entered stationary phase, and also as cells on starvation agar progressed through developmental stages. Two-dimensional agarose electrophoresis was employed to obtain an unambiguous estimate of the genome size of this organism, approximately 5690 × 103 base-pairs (±9%). Using the same method, the Escherichia coli genome was measured to be 3520 × 103 base-pairs (±7%).  相似文献   

8.
Margit M.K. Nass 《Gene》1983,21(3):249-255
A precise physical map, containing the structurally and operationally defined D-loop origin, terminal region, and direction of heavy-strand replication, has been constructed for mitochondrial DNA (mtDNA) from ovary (CHO-KI) and lung cells of Chinese hamster (Cricetulus griseus 2 N = 22), and compared with our previously established genome coordinates for mtDNA from Syrian hamster ( Mesocricetus auratus 2 N = 44). All four HpaI sites in Cricetulus are conserved in Mesocricetus (8 sites). Extensive variation exists for hexanucleotides cleaved by EcoRI HindIII PstI. KpnI and BamHI. Sequence divergence between Chinese and Syrian hamster mtDNAs, as reflected from analysis of the mapped recognition sites for these six endonucleases, is estimated as 5–9% base substitutions. mtDNAs from both hamster and several other mammalian species contain a commonly conserved HpaI site in the region of light strand initiation.  相似文献   

9.
The putative replication origin of Azotobacter vinelandii was cloned as an autonomously replicating fragment after ligation to an antibiotic resistance cartridge. The resulting plasmids could be isolated and labelled by Southern hybridisation with the antibiotic resistance cartridge as probe and also visualised by electron microscopy. These plasmids integrated into the chromosome after a few generations, even in the recA mutant of A. vinelandii. The integrated copy of the plasmid was re-isolated from the chromosome and the DNA and its subfragments were cloned in the plasmid vector pBR322. A 200-bp DNA fragment was sufficient to allow the replication of pBR322 in an Escherichia coli polA strain. Electron microscopic analysis of this plasmid showed that replication initiated mostly within the A. vinelandii DNA fragment. The nucleotide sequence of the putative replication origin and its flanking regions was determined. In the sequence of the 200-bp fragment many of the distinctive features found in other replication origins are lacking. A greater variation from the consensus DnaA binding sequence was observed in A. vinelandii. Direct sequencing of the relevant genomic fragment was also carried after amplifying it from A. vinelandii chromosomal DNA by PCR. This confirmed that no rearrangements had taken place while the cloned fragment was resident in E. coli. It was shown by hybridisation that the 200-bp chromosomal origin fragment of A. vinelandii was present in three other field strains of Azotobacter spp.  相似文献   

10.
Bacteriophage resistance mechanisms which are derived from a bacteriophage genome are termed Per (phage-encoded resistance). When present in trans in Lactococcus lactis NCK203, Per50, the cloned origin of replication from phage 50, interferes with 50 replication. The per50 fragment was found to afford negligible protection to NCK203 against 50 infection when present in a low-copy-number plasmid, pTRK325. A high-copy-number Per50 construct (pTRK323) dramatically affected 50 infection, reducing the efficiency of plaquing (EOP) to 2.5 × 10-4 and the plaque size to pinhead proportions. This clone also afforded significant protection against other related small isometric phages. Per31 was cloned from phage 31 and demonstrated to function as an origin of replication by enabling replication of per31-containing plasmids, in NCK203, on 31 infection. A low-copy-number Per31 plasmid (pTRK360) reduced the EOP of 31 on NCK203 to 0.3 and the plaque diameter from 1.5 to 0.5 mm. When this plasmid was cloned in high copy number, the EOP was further reduced to 7.2 × 10-7 but the plaques were large and contained Per31-resistant phages. Characterization of these “new” phages revealed at least two different types that were similar to 31, except that DNA alterations were noted in the region containing the origin. This novel and powerful abortive phage resistance mechanism should prove useful when directed at specific, problematic phages.  相似文献   

11.
12.
32P-labeled adenovirus 2 DNA was treated with restricting endonuclease from Escherichia coli strain RY-13 (Yoshimori, 1972) (EcoRI) or restricting endonuclease from Hemophilus parainfluenzae (Hpa I) and the resulting fragments of DNA were separated by gel electrophoresis. The kinetics of renaturation of each of the fragments and of complete adenovirus 2 DNA were measured in the presence of DNA extracted from nine lines of adenovirus 2-transformed rat cells and from control cells. Six of the transformed cell lines contained viral DNA sequences homologous to two of the seven Hpa I4 fragments and to part of one of the six EcoRI fragments. From the order of the fragments formed by EcoRI and Hpa I on the adenovirus 2 map we conclude that these cell lines contain only the segment of viral DNA that stretches from the left-hand end to a point about 14% along the viral genome. Thus, any viral function expressed in transformed cells must be coded by this small section of viral DNA. The three remaining lines of adenovirus 2-transformed rat cells are more complicated and contain not only the sequences from the left-hand end of the viral DNA, but also other segments of the viral genome. However, no adenovirus 2-transformed rat cell contained DNA sequences homologous to the complete viral genome.  相似文献   

13.
DNA containing the reiterated genes for tRNA1met has been partially purified from Xenopus laevis by centrifugation in actinomycin C1-CsCl and Ag+-Cs2SO4 gradients. These gradients separate the tRNA1met genes from those coding for tRNA2met and tRNAval, thus confirming our earlier suggestion that these genes are not intermingled with each other (Clarkson, Birnstiel, and Purdom, 1973). The gradients also demonstrate the existence of a minor 5S DNA fraction which appears to differ from that previously isolated by Brown, Wensink, and Jordan (1971).When the enriched tDNA1met is digested to completion with either of the restriction endonucleases EcoRI or Hpa I, the tRNA1met genes are predominantly found within DNA fragments that are about 3100 base pairs long. A partial digestion with EcoRI shows that these fragments arise from the regular spacing of the enzyme restriction sites. The 3100 base pair EcoRI fragments are cleaved by Hpa I into fragments of two size classes, one of which is about 2200 base pairs long and contains the tRNA1met genes. The shorter fragments are about 700 base pairs long, and they appear to contain genes coding for at least one other kind of tRNA species. X. laevis tDNA1met thus comprises tandemly repeated DNA whose component parts show little if any length heterogeneity.  相似文献   

14.
We carried out a restriction enzyme analysis of human ribosomal DNA structure on total placental DNA using the Southern (1975) method. Studies on a single individual using HindIII, PstI, HpaI and BglII revealed that a region of the non-transcribed spacer near the 3′ end of the 28 S gene was heterogeneous in size. Four fragment classes were detected in this individual. Adjacent classes differed in size from one another by about 0·8 × 103 bases. Analysis of 19 additional placental samples and four cell lines revealed no fragment classes other than those detected in the original sample. Mixing experiments carried out with all 20 placental DNA samples provided further evidence for the discrete nature of the population polymorphism in the length of this region of the spacer. This finding contrasts sharply with the almost continuous nature of the population polymorphism in the length of a region of the non-transcribed spacer in Xenopus laevis.  相似文献   

15.
To clone new replication origin(s) activated under RNase H-defective (rnh ) conditions in Escherichia coli cells, whole chromosomal DNA digested with EcoRI was to with a Kmr DNA fragment and transformed into an rnh derivative host. From the Kmr transformants, we obtained eight kinds of plasmid-like DNA, each of which contained a specific DNA fragment, termed Hot, derived from the E. coli genome. Seven of the Hot DNAs (HotA-G) mapped to various sites within a narrow DNA replication termination region (about 280 kb), without any particular selection. Because Hot DNA could not be transformed into a mutant strain in which the corresponding Hot region had been deleted from the chromosome, the Hot DNA, though obtained as covalently closed circular (ccc) DNA, must have arisen by excision from the host chromosome into which it had initially integrated, rather than by autonomous replication of the transformed species. While Hot DNA does not have a weak replication origin it does have a strong recombinational hotspot active in the absence of RNase H. This notion is supported by the finding that Chi activity was present on all Hot DNAs tested and no Hot-positive clone without Chi activity was obtained, with the exception of a DNA clone carrying the dif site.  相似文献   

16.
The map of the seven sites for the restriction endonuclease HindIII3 and the single site for endo R.HpaII on PM2 DNA was determined. This map was oriented with respect to the denaturation map of this DNA (Brack et al., 1975) by partial denaturation mapping of the fragments. A new method for localizing restriction fragments by DNA-DNA hybridization and electron microscopy is described.  相似文献   

17.
Summary A DNA sequence cosisting of 617 base pairs (bp) from the region of the origin of replication of the broad-host range plasmid RK2 has been determined. Included within this sequence is a 393 bp HpaII restriction fragment that provides a functional origin or replication when other essential RK2 specified functions are provided in trans. Also contained in this sequence is a region, distinguished functionally from the replication origin, which is involved in the expression of inc 2 incompatibility, i.e., the ability of derivatives of RK2 to eliminate a resident RK2 plasmid. The 617 bp sequence includes eight 17 base pair direct repeats with 5 located within the region required for a functional replication origin and 3 within the region involved in inc 2 incompatibility. In addition, a 40 bp region rich in A-T followed by a 60 bp stretch having a high G+C content is present. Deletion evidence indicates that the A-T rich and possibly the G+C regions are required for a functional replication origin. Based on the evidence contained in this and the preceding paper (Thomas et al. 1980 b) a model will be presented for the involvement of these specific sequences in the initiation of RK2 DNA replication, plasmid maintenance and plasmid incompatibility.  相似文献   

18.
Restriction analysis of the duplex replicative forms of four cloned M13 miniphage indicates that all species examined contain a single copy of the intergenic space between genes II and IV plus one or more copies of a portion of the genome extending from within gene IV to a site in the HaeIII G fragment within the intergenic space. Both the viral and the complementary strand origins of replication have been localized previously within the 160 base-pair HaeIII G fragment. Since reiteration of a portion of the HaeIII G fragment could possibly lead to phages having multiple copies of the origin of replication, we have determined the location of the viral strand origin-terminus in M13 miniphage by mapping the position of the discontinuity(ies) in mini-RFII3 molecules isolated during asymmetric viral strand synthesis. Limited repair of late life-cycle mini-RFII molecules with DNA polymerase I in the presence of labeled deoxynucleoside triphosphates followed by restriction analysis demonstrates that the discontinuity in the RFII is contained at a unique site within the single HaeIII G fragment. The absence of a discontinuity in the reiterated DNA sequence containing only a portion of the HaeIII G fragment indicates that the reiterations of the origin region do not include the entire sequence specifying the viral strand origin-terminus.  相似文献   

19.
A 1.7 × 103 base-pair SalI fragment of mouse ribosomal gene spacer undergoes recA-independent deletions of DNA in units of approximately 126 base-pairs when cloned in λ or bacterial plasmids. When we examined the structure of the 1.7 × 103 base-pair piece with PvuII we found it to be composed of about equal numbers of copies of each of two subrepeating units, 120 and 130 base-pairs in size. The correlation between the size of the structural subunits and the functional genetic unit of this fragment as expressed in Escherichia coli led us to study the organization of these sequences in mice. SalI (or HindII) digests of DNA samples from wild and inbred strains revealed extensive heterogeneity in the size of fragments homologous to this 1.7 × 103 base-pair piece. A total of 15 different size classes were detected in our samples. We found that these fragments were also organized in PvuII repeating units about equal in size to the PvuII repeats in the cloned 1.7 × 103 base-pair piece. Using an objective analytical procedure (see the Appendix) we determined that the 15 different fragments found in our mouse DNA samples probably originated as a result of genetic events based on a 135 base-pair structural unit.We consider the similarity between the size of the PvuII structural unit and the unit of genetic behavior in both the cloned and uncloned DNA samples to be significant. We suspect that there are aspects of the nucleotide structure or organization of the PvuII repeating units that play a dominant role in its genetic behavior, regardless of whether these sequences are present in E. coli or mice. We believe that the clones containing this mouse sequence may provide an experimental system for studying the nature of the genetic events that are involved in multigene evolution.  相似文献   

20.
The origin of DNA replication (oriC) of the hyperthermophilic archaeon Pyrococcus abyssi contains multiple ORB and mini-ORB repeats that show sequence similarities to other archaeal ORB (origin recognition box). We report here that the binding of Cdc6/Orc1 to a 5kb region containing oriC in vivo was highly specific both in exponential and stationary phases, by means of chromatin immunoprecipitation coupled with hybridization on a whole genome microarray (ChIP-chip). The oriC region is practically the sole binding site for the Cdc6/Orc1, thereby distinguishing oriC in the 1.8M bp genome. We found that the 5kb region contains a previously unnoticed cluster of ORB and mini-ORB repeats in the gene encoding the small subunit (dp1) for DNA polymerase II (PolD). ChIP and the gel retardation analyses further revealed that Cdc6/Orc1 specifically binds both of the ORB clusters in oriC and dp1. The organization of the ORB clusters in the dp1 and oriC is conserved during evolution in the order Thermococcales, suggesting a role in the initiation of DNA replication. Our ChIP-chip analysis also revealed that Mcm alters the binding specificity to the oriC region according to the growth phase, consistent with its role as a licensing factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号