首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S W Eber  M Gahr  W Schr?ter 《Blut》1985,51(2):109-115
Two new inheritable variants of glucose-6-phosphate dehydrogenase have been found in two unrelated German families. Patients with one variant (G6PD Iserlohn, also referred to as G6PD I) suffered from intermittent hemolytic crises caused by fava beans; patients with the other variant (G6PD Regensburg, G6PD II) disclosed chronic nonspherocytic hemolytic anemia aggravated by drug treatment. Due to their unusual biochemical characteristics, the new variants were designated G6PD Iserlohn and G6PD Regensburg. Both variants showed a reduction of enzyme activity to about 6% of the normal in erythrocytes, normal electrophoretic mobility, increased affinity for glucose-6-phosphate, a reduced affinity for NADP and a pH optimum in the neutral region (7.0 and 7.5). G6PD Iserlohn had a decreased affinity for the inhibitor NADPH; G6PD Regensburg had a normal inhibitor constant. Deamino NADP was utilized at an increased rate by G6PD Regensburg. G6PD Iserlohn was thermostable, G6PD Regensburg mildly instable. G6PD activity in leukocytes was normal in G6PD Iserlohn and reduced to the same degree as in erythrocytets in G6PD Regensburg. The cause of the decreased activity of G6PD Iserlohn appears to be in vivo instability; in G6PD Regensburg further mechanisms might include reduced specific activity or reduced synthesis of the variant enzyme.  相似文献   

2.
Summary A new variant of G6PD with total enzyme deficiency associated with nonspherocytic hemolytic anemia in a 60 year old Frenchman is characterized. Partially purified enzyme revealed slow electrophoretic mobility, decreased G6P affinity, thermal instability, abnormal pH curve with a single peak at pH 5.0, abnormal utilization of 2-deoxy-G6P and deamino NADP. This variant differs from all previously reported variants associated with chronic nonspherocytic hemolytic anemia. Accordingly this variant is designated Gd(-) Rennes.  相似文献   

3.
Summary A new glucose-6-phosphate dehydrogenase (G6PD) variant with severe erythrocytic G6PD deficiency and a unique pH optimum is described in a young patient with chronic nonspherocytic hemolytic anemia (CNSHA) and familial amyloidotic polyneuropathy (FAP). Chronic hemolysis was present in the absence of infections, oxidant drugs or ingestion of faba beans. Residual enzyme activity was about 2.6% and 63% of normal activity in erythrocytes and leucocytes, respectively. A molecular study using standard methods showed G6PD in the patient to have normal electrophoretic mobility (at pH 7.0, 8.0 and 8.8), normal apparent affinity for substrates (Km, G6P and NADP) and a slightly abnormal utilization of substrate analogues (decreased deamino-NADP and increased 2-deoxyglucose-6-phosphate utilization). Heat stability was found to be markedly decreased (8% of residual activity after 20 min of incubation at 46°C) and a particular characteristic of this enzyme was a biphasic pH curve with a greatly increased activity at low pH. Although molecular characteristics of this variant closely resemble those of G6PD Bangkok and G6PD Duarte, it can be distinguished from these and all other previously reported variants by virtue of its unusual pH curve. Therefore the present variant has been designated G6PD Clinic to distinguish it from other G6PD variants previously described.  相似文献   

4.
Summary A new glucose 6-phosphate dehydrogenase (G6PD) variant associated with chronic nonspherocytic hemolytic anemia was discovered in Japan. The patient showed hemolytic crises after upper respiratory infections. The enzyme activity was about 3.8% of the normal. The partially purified enzyme revealed slow anodal electrophoretic mobility, high Km NADP, marked thermal-instability, and increased affinity for a substrate analogue (deamino-NADP). A particular characteristic of this enzyme was a biphasic pH curve with a greatly increased activity at low pH values. From these results, this variant was clearly different from hitherto observed G6PD variants, and was designated G6PD Asahikawa.  相似文献   

5.
Summary Two new glucose 6-phosphate dehydrogenase (G6PD) variants associated with chronic nonspherocytic hemolytic anemia were discovered. G6PD Kobe was found in a 16-year-old male associated with hemolytic crisis after upper respiratory infection. The enzyme activity of the variant was about 22% of that of the normal enzyme. The main enzymatic characteristics were slower than normal anodal electrophoretic mobility, high Km G6P, increased thermal-instability, an acidic pH optimum, and an extremely increased affinity for the substrate analogue, galactose 6-phosphate (Gal-6P).G6PD Sapporo was found in a 3-year-old male associated with drug-induced hemolysis. The enzyme activity was extremely low, being 3.6% of normal. In addition, this variant showed high Ki NADPH and thermal-instability.G6PD Kobe utilized the artificial substrate Gal-6P effectively as compared with the common natural substrate, glucose 6-phosphate. In G6PD Sapporo, NADPH could not exert the effect of product inhibition. The structural changes of these variants are expected to occur at the portions inducing conformational changes of the substrate binding site of the enzyme.  相似文献   

6.
Summary We describe a previously unreported glucose-6-phosphate dehydrogenase (G6PD) variant. G6PD Huntsville was found in a Caucasian male, resident of Huntsville, Alabama who was investigated for otherwise unexplained chronic hemolytic anemia. An unusual feature of this unique, apparently hemolytic, G6PD mutant is that its red cell enzymatic activity has not been decreased. The mutant enzyme is unstable. Additionally, the enzyme variant is characterized by normal electrophoretic mobility, biphasic and slightly alkaline pH optimum, and abnormal kinetics for the natural substrates G6PD and NADP as well as the artificial substrates deamino NADP. Its activity for another artificial substrate 2-deoxy G6PD is normal. The inhibition constant for NADPH is normal. The subject has had no evidence of episodic jaundice.  相似文献   

7.
Kinetic and electrophoretic properties of 230--300 fold purified preparations of glucose-6-phosphate dehydrogenase (G6PD) from red cells of donors and patients with acute drug hemolytic anemia due to G6PD deficiency were studied. A new abnormal variant of G6PD isolated from red cell of a patient with acute drug hemolytic anemia, which was not described in literature, has been discovered. The abnormal enzyme differs from the normal by decreased Michaelis constant for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP), by increased utilization of analogues of substrates--2-deoxy-glucose-6-phosphate and particularly deamino-NADP, by low thermal stability, by the character of pH-dependence, by the appearance of a single band of G6PD activity in polyacrylamide gel electrophoresis.  相似文献   

8.
Summary A new variant of the erythrocytic enzyme Glucose-6-phosphate Dehydrogenase was detected in two unrelated Greek individuals. The variant was designated G6PD Thessaly. It is characterized by normal levels of G6PD activity in the red cells and electrophoretic migration slower than G6PD B on phosphate and T.E.B. buffers while faster than G6PD B on Tris-HCl buffer. In addition, the Thessaly variant has distinctly decreased affinity for NADP.This study was supported by National Institutes of Health Grant GM 15253.  相似文献   

9.
A new glucose-6-phosphate dehydrogenase (G6PD) variant associated with chronic nonspherocytic hemolytic anemia was discovered. It was found in a 2-year-old male who had a hemolytic crisis after an upper respiratory tract infection. The enzyme activity of the variant was 8.4% of that of the normal enzyme. The enzymatic characteristics were slower than normal anodal electrophoretic mobility, low Km G6P, normal Km NADP, increased utilization of substrate analogues, high Ki NADPH, decreased heat stability, and an alkaline pH optimum. From these results, this was considered to be a new variant and was designated G6PD Sendagi.  相似文献   

10.
Summary A new glucose-6-phosphate dehydrogenase (G6PD) variant associated with chronic nonspherocytic hemolytic anemia was found in a 20-year-old Japanese male who showed mild hemolysis after an upper respiratory tract infection. The patient had been noted to have jaundice and reticulocytosis several times before this episode. The enzyme activity of the variant was 1.5% of normal. The enzymatic characteristics were slow anodal electrophoretic mobility, high Km G6P, normal Km NADP, decreased heat stability, and a normal pH optimum. From these results, the enzyme was considered to be a new class 1 variant and was designated G6PD Tsukui.  相似文献   

11.
Summary A new glucose-6-phosphate dehydrogenase (G6PD) variant associated with chronic nonspherocytic hemolytic anemia was reported. The patient, a 6-year-old Japanese male, was noticed to have hemolytic anemia soon after birth, and a diagnosis of G6PD deficiency was made at the age of 2. He had episodes of hemolytic crisis several times after upper respiratory infection. G6PD activity of the patient was 5.5% of normal. The enzymatic characteristics were examined when he was 5 years old, and his G6PD showed faster-than-normal electrophoretic mobility, low Km G6P, high Km NADP, low Ki NADPH, normal utilization of substrate analogues, heat instability, and a normal pH optimum curve. From these results, this was considered to be a new variant and was designated G6PD Nagano. Infection-induced hemolysis and chronic hemolytic anemia seem to be due to markedly impaired enzyme activity and thermal instability.  相似文献   

12.
Summary During the course of a large survey of red cell G6PD genotypes in The Gambia, a slow electrophoretic variant with reduced enzyme activity was found to occur at a high frequency. This variant, G6PD Gambia, was found in the following genotypic combinations: males; G6PDGam, females; G6PDA+/Gam, G6PDB+/Gam, and G6PDA-/Gam. From the electrophoretic mobility and kinetic characteristics it was concluded that G6PD Gambia was a hitherto unreported variant of G6PD. The frequency of the G6PDGam gene amongst the 1109 individuals examined was 0.024.  相似文献   

13.
Summary A new G6PD variant, called G6PD Vientiane, has been discovered in a patient from Laos.The characteristics of this variant are: mild enzyme deficiency (about 50% of the normal activity) in the granulocytes and the red cells, with normal G6PD-related antigen concentration; increased stability; normal Km glucose 6-phosphate and NADP+; increased inhibition constant by NADPH; decreased inhibition by ATP; slightly increased utilization of the substrate analogue; abnormal pH curve, with maximum activity at pH 9.5; slightly reduced starch gel electrophoretic migration. The implications of the molecular stability of a deficient mutant variant are discussed.  相似文献   

14.
Summary A new deficient variant of glucose-6-phosphate dehydrogenase (G6PD) causing severe congenital nonspherocytic hemolytic anemia (CNSHA) is described. The variant enzyme, characterized by slow electrophoretic mobility, extreme in vivo and in vitro lability, high Km for G6P and strongly acidic pH optimum, appears to be unique, and has been designated G6PD Genova. Investigation of an obligate heterozygote using various cytochemical, biochemical and recombinant-DNA techniques showed G6PD mosaicism in the erythrocytes and leukocytes. Therefore, the presence of a disadvantageous mutation at one Gd locus did not determine selection in favor of the normal allele in the heterozygote's hemopoietic cells.  相似文献   

15.
In the Ferrara district, an area south of the Po delta, four different variants of glucose-6-phosphate dehydrogenase (G6PD;E.C.1.1.49) have been described as a result of biochemical characterization of the enzyme protein: one was G6PD Mediterranean (G6PD Med) and three were local variants named Ferrara I, II, and III. The Ferrara I variant was recently analysed at the DNA level and shown to correspond to G6PD A376G/202A, while the mutations causing the variants II and III, still remain unknown. We analysed the G6PD coding region of 18 apparently unrelated G6PD deficient subjects, whose families have lived in the Ferrara district for at least three generations: 12 subjects had G6PD Med563T/1311T, 3, G6PD Santamaria376G/542T and 2, G6PD A-376G/202A. In one subject we found a new mutation, a GA transition at nucleotide 242 causing an ArgHis amino acid replacement at position 81. We named this new variant G6PD Lagosanto242 A. Phenotypically the enzyme has nearly normal kinetic properties and appears different from the variants Ferrara II and III.  相似文献   

16.
Summary Three new glucose-6-phosphate dehydrogenase (G6PD) variants, which showed electrophoretically normal mobility and were associated with chronic nonspherocytic hemolytic anemia, were found in Japan. G6PD Ogikubo, found in a 17-year-old male whose red cells contained 3% of normal enzyme activity, had normal Km G6P, normal Km NADP, normal utilization of deamino-NADP, decreased heat stability, and a normal pH curve. G6PD Yokohama, characterized from a 15-year-old male, had 1.9% of normal enzyme activity, normal Km G6P, normal Km NADP, low Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NADP, decreased heat stability, and normal pH curve. G6PD Akita, characterized from a 56-year-old male, had an undetectably low activity when hemolysate was examined, normal Km G6P, normal Km NADP, normal Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NADP, decreased heat stability, and normal pH curve.The degree of hemolytic anemia was moderate to mild in all three patients.  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disease, which causes neonatal hemolytic anemia and jaundice. Recent studies of our group showed that the Mediterranean variant of this enzyme (Gd-Md) is the predominant G6PD in Iranian male infants suffering from jaundice; this variant is classified as severe G6PD deficiency. Considering the importance of G6PD reaction and its products NADPH and glutathione (GSH) against oxidative stress, we hypothesized the failure of detoxification of H(2)O(2) in G6PD-deficient white blood cells that could probably induce primary DNA damage. For the evaluation of DNA damage, we analyzed mononuclear leukocytes of 36 males suffering from the Gd-Md deficiency using alkaline single cell gel electrophoresis (SCGE) or comet assay. The level of DNA damage was compared with the level of basal DNA damage in control group represented by healthy male infant donors (of the same age group). Visual scoring was used for the evaluation of DNA damages. The results showed that the mean level of the DNA strand breakage in mononuclear leukocytes of 36 male G6PD-deficient (Gd-Md) infants was significantly higher (P < 0.001) than those observed in the normal lymphocytes. In conclusion, this investigation indicates that the mononuclear leukocytes of the Gd-Md samples may be exposed to DNA damage due to oxidative stress. This is the first report using comet assay for evaluation of DNA damage in severe G6PD deficiency samples.  相似文献   

18.
The enzyme variant glucose-6-phosphate dehydrogenase (G6PD) A(-), which gives rise to human glucose-6-phosphate dehydrogenase deficiency, is a protein of markedly reduced structural stability. This variant differs from the normal enzyme, G6PD B, in two amino acid substitutions. A further nondeficient variant, G6PD A, bears only one of these two mutations and is structurally stable. In this study, the synergistic structural defect in recombinant G6PD A(-) was reflected by reduced unfolding enthalpy due to loss of beta-sheet and alpha-helix interactions where both mutations are found. This was accompanied by changes in inner spatial distances between residues in the coenzyme domain and the partial disruption of tertiary structure with no significant loss of secondary structure. However, the secondary structure of G6PD A(-) was qualitatively affected by an increase in beta-sheets substituting beta-turns related to the lower unfolding enthalpy. The structural changes observed did not affect the active site of the mutant proteins, since its spatial position was unmodified. The final result is a loss of folding determinants leading to a protein with decreased intracellular stability. This is suggested as the cause of the enzyme deficiency in the red blood cell, which is unable to perform de novo protein synthesis.  相似文献   

19.
G6PD Viangchan: a new glucose 6-phosphate dehydrogenase variant from Laos   总被引:1,自引:1,他引:0  
Summary We describe a previously unreported glucose-6-phosphate dehydrogenase-(G6PD) variant. G6PD Viangchan was found in a Laotian immigrant to Calgary, Canada, and was characterized by severe enzyme deficiency, normal electrophoretic mobility, increased pH optimum, and abnormal kinetics for the natural substrates G6PD and NADP, as well as the artificial substrates 2-deoxy G6PD and deamino NADP. The inhibition constant for NADPH was decreased. The subject has no evidence suggesting chronic or episodic hemolysis.  相似文献   

20.
Summary Two new G6PD variants have been found in red blood cells of the members of a French family originating from Lozere. The father is hemizygous for an electrophoretically fast variant with mild enzyme deficiency (50–60% of normal). The abnormal paternal G6PD gene is segregating in his daughter who is double heterozygous for maternal and paternal variants. This mutant enzyme, different from previously described variants is designated as Gd Lozère. The mother is heterozygous for another G6PD variant. Two sons are hemizygous for this latter mutant enzyme characterized by a moderate deficiency (25–30% of normal) and slower electrophoretic mobility with some slightly altered kinetic properties. This G6PD has been identified as Gd Trinacria like.These two abnormal enzymes are not associated with any hemolytic problem. Case reported is the first showing the segregation of two new mutant enzymes, distinct from common G6PD variants, among the members of the same family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号