首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dangoor D  Rubinraut S  Fridkin M  Gozes I 《Peptides》2007,28(9):1622-1630
The effect of multiplication of the N-terminal domain of vasoactive intestinal peptide (VIP) on the binding activity of the peptide was recently evaluated. A VIP analog with multiple N-terminal domains was found to be slightly more potent as compared to [Nle(17)]VIP towards VIP receptor type 1 (VPAC1)-related cAMP production. Here, the effect of multiplication of the C-terminal domain of VIP was evaluated with the aim of possibly amplifying peptide-receptor (VPAC1) binding and activation. Several VIP analogs were designed and synthesized, each carrying multiplication of the C-terminal domain that was obtained by either a simple linear tandem extension or by a unique branching methodology. Results show that despite significant alterations in the C-terminal domain of VIP that is considered essential to induce potent receptor binding, few peptides demonstrated only slight reduction in receptor binding and activation in comparison to [Nle(17)]VIP. Furthermore, a specific branched VIP analog with multiple C-terminal domains was equipotent to [Nle(17)]VIP in the cAMP production assay. Therefore, it is concluded that the association between the VIP ligand to the VIP receptor could be tolerable to size increases in the C-terminal region of the VIP ligand and multiplication of the C-terminal does not increase activity.  相似文献   

3.
Oxyntomodulin (OXM) and glicentin, two peptides processed from proglucagon, both contain the glucagon sequence and a C-terminal basic octapeptide, KRNRNNIA extension. A method to produce antibodies, directed specifically toward the C-terminal extension of these two peptides, was developed; it consisted of the use of thioled bovine serum albumin conjugated with the synthetic N-maleoyl C-terminal octapeptide as the immunogen. Three rabbits (FAN, LEG, and PIP) generated antisera with affinity constants close to 5 X 10(10) M-1. In the radioimmunoassay system, these antisera showed a 100% cross-reactivity with OXM, partially purified rat and human glicentin, and the C-terminal 19-37 OXM fragment. They displayed no cross-reactivity toward the glucagon molecule. The cross-reactivity of C-terminal fragments of OXM demonstrated that the epitope involves the C-terminal hexapeptide and that the two last amino acid residues are essential for the binding. The high-performance liquid chromatography elution profiles of human jejunum or rat intestinal extracts obtained by radioimmunoassay with LEG antiserum showed two major peaks which had the same retention times as OXM and glicentin markers. Thus, the major end products in the human and rat small intestine are OXM and glicentin. In human or rat pancreas, the two main peaks detected were glucagon and the C-terminal hexapeptide of OXM/glicentin. Small amounts of OXM were also found in pancreas, whereas no significant quantities of glicentin could be detected. The "thiol-maleoyl" coupling method described here, and applied to produce C-terminal OXM/glicentin specific antisera, might be of general use to obtain antibodies against a well-defined epitope.  相似文献   

4.
The effects of glucagon on the concentration and output of cAMP were studied in liver slices and in perfused livers from female rats and from animals treated with ethynyl estradiol (15 μg/kg daily for 14 days). The basal content of cAMP in liver slices, or of cAMP released into the perfusion medium in the absence of glucagon, was unaffected by prior treatment of the animal with estrogen. When glucagon was added to the medium, the concentration of cAMP in liver slices was 2.29 ± 0.32 and 1.10 ± 0.11 pmol cAMP/mg wet weight from control and ethynyl estradiol treated rats, respectively. When glucagon was added, the output of cAMP by perfused livers was maximal at 20 minutes with livers from either control or ethynyl estradiol treated rats. Output of cAMP by the perfused liver, when glucagon was added to the medium, was 8.76 ± 0.69 and 1.84 ± 0.08 nmol/g by livers from control and ethynyl estradiol treated rats, respectively. This effect was the same whether animals had been fasted for 12 hours previously, or were allowed free access to food until sacrifice. Clearly, as measured by cAMP accumulation, prior treatment of the rat with ethynyl estradiol reduced the sensitivity of the hepatic cAMP response to glucagon.  相似文献   

5.
The glucagon receptor is a member of a distinct class of G protein-coupled receptors (GPCRs) sharing little amino acid sequence homology with the larger rhodopsin-like GPCR family. To identify the components of the glucagon receptor necessary for G-protein coupling, we replaced sequentially all or part of each intracellular loop (i1, i2, and i3) and the C-terminal tail of the glucagon receptor with the 11 amino acids comprising the first intracellular loop of the D4 dopamine receptor. When expressed in transiently transfected COS-1 cells, the mutant receptors fell into two different groups with respect to hormone-mediated signaling. The first group included the loop i1 mutants, which bound glucagon and signaled normally. The second group comprised the loop i2 and i3 chimeras, which caused no detectable adenylyl cyclase activation in COS-1 cells. However, when expressed in HEK 293T cells, the loop i2 or i3 chimeras caused very small glucagon-mediated increases in cAMP levels and intracellular calcium concentrations, with EC50 values nearly 100-fold higher than those measured for wild-type receptor. Replacement of both loops i2 and i3 simultaneously was required to completely abolish G protein signaling as measured by both cAMP accumulation and calcium flux assays. These results show that the i2 and i3 loops play a role in glucagon receptor signaling, consistent with recent models for the mechanism of activation of G proteins by rhodopsin-like GPCRs.  相似文献   

6.
Although many effects of leptin are mediated through the central nervous system, leptin can regulate metabolism through a direct action on peripheral tissues, such as fat and liver. We show here that leptin, at physiological concentrations, acts through an intracellular signaling pathway similar to that activated by insulin in isolated primary rat hepatocytes. This pathway involves stimulation of phosphatidylinositol 3-kinase (PI3K) binding to insulin receptor substrate-1 and insulin receptor substrate-2, activation of PI3K and protein kinase B (AKT), and PI3K-dependent activation of cyclic nucleotide phosphodiesterase 3B, a cAMP-degrading enzyme. One important function of this signaling pathway is to reduce levels of cAMP, because leptin-mediated activation of both protein kinase B and phosphodiesterase 3B is most marked following elevation of cAMP by glucagon, and because leptin suppresses glucagon-induced cAMP elevation in a PI3K-dependent manner. There is little or no expression of the long form leptin receptor in primary rat hepatocytes, and these signaling events are probably mediated through the short forms of the leptin receptor. Thus, leptin, like insulin, induces an intracellular signaling pathway in hepatocytes that culminates in cAMP degradation and an antagonism of the actions of glucagon.  相似文献   

7.
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [125I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser449 to Ser467 were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.  相似文献   

8.
Incubation of isolated hepatocytes containing normal Ca2+ levels with angiotensin II, vasopressin or A23187 caused significant inhibition of the cAMP response to glucagon. Angiotensin II also inhibited cAMP accumulation induced by either glucagon or epinephrine in Ca2+-depleted hepatocytes. When submaximal doses of hormone were employed such that cell cAMP was elevated only 3-4-fold (approximately 2 pmol cAMP/mg wet wt cells) inhibition by angiotensin II was correlated with a decrease in phosphorylase activation. The data demonstrate that inhibition of hepatic cAMP accumulation results in reduced metabolic responses to glucagon and epinephrine and do not support the contention that the hepatic actions of glucagon are independent of cAMP.  相似文献   

9.
Glucagon, secreted by the pancreatic alpha-cells, stimulates insulin secretion from neighboring beta-cells by cAMP- and protein kinase A (PKA)-dependent mechanisms, but it is not known whether glucagon also modulates its own secretion. We have addressed this issue by combining recordings of membrane capacitance (to monitor exocytosis) in individual alpha-cells with biochemical assays of glucagon secretion and cAMP content in intact pancreatic islets, as well as analyses of glucagon receptor expression in pure alpha-cell fractions by RT-PCR. Glucagon stimulated cAMP generation and exocytosis dose dependently with an EC50 of 1.6-1.7 nm. The stimulation of both parameters plateaued at concentrations beyond 10 nm of glucagon where a more than 3-fold enhancement was observed. The actions of glucagon were unaffected by the GLP-1 receptor antagonist exendin-(9-39) but abolished by des-His1-[Glu9]-glucagon-amide, a specific blocker of the glucagon receptor. The effects of glucagon on alpha-cell exocytosis were mimicked by forskolin and the stimulatory actions of glucagon and forskolin on exocytosis were both reproduced by intracellular application of 0.1 mm cAMP. cAMP-potentiated exocytosis involved both PKA-dependent and -independent (resistant to Rp-cAMPS, an Rp-isomer of cAMP) mechanisms. The presence of the cAMP-binding protein cAMP-guanidine nucleotide exchange factor II in alpha-cells was documented by a combination of immunocytochemistry and RT-PCR and 8-(4-chloro-phenylthio)-2'-O-methyl-cAMP, a cAMP-guanidine nucleotide exchange factor II-selective agonist, mimicked the effect of cAMP and augmented rapid exocytosis in a PKA-independent manner. We conclude that glucagon released from the alpha-cells, in addition to its well-documented systemic effects and paracrine actions within the islet, also represents an autocrine regulator of alpha-cell function.  相似文献   

10.
The lutropin (LH) receptor, which belongs to the family of G-protein coupled receptors, consists of an extracellular hydrophilic N-terminal extension of 341 amino acids and a membrane-embedded C-terminal region of 333 amino acids. This C-terminal region comprises a short N terminus, seven transmembrane domains, three cytoplasmic loops, three exoplasmic loops, and a C terminus. Recently, it was reported that the N-terminal extension of the LH receptor alone or a naturally occurring variant LH receptor similar to the N-terminal extension is capable of binding the hormone with an affinity slightly higher than that of the native receptor. This finding raises a question as to whether the N-terminal extension represents the entire hormone binding site and, if so, how is hormone binding transduced to the activation of a G-protein? In an attempt to answer this important question, we have prepared truncated receptors containing an N-terminal extension as short as 10 amino acids. Surprisingly, the truncated receptors were not only capable of binding the hormone, albeit with low affinities, but also capable of stimulating cAMP synthesis. These results suggest a possibility that the hormone, at least in part, interacts with the membrane-embedded C-terminal region and modulates it to activate adenylate cyclase. The low hormone binding affinities of the truncated receptors taken together with high affinity hormone binding to the N-terminal extension of the LH receptor indicate the existence of two or more contact points between the receptor and the hormone.  相似文献   

11.
Free cells isolated from adult rat heart by the collagenase method were maintained in culture up to 21 h with or without an islet-activating protein (IAP) that had been purified from the culture medium of Bordetella pertussis. Short-term stimulation of beta-adrenergic or glucagon receptors in these cultured cells caused more accumulation of cAMP in cells precultured with IAP (IAP-treated) than in nontreated cells, although there was no significant difference in the baseline (non-stimulated) content of cAMP between these cells. Stimulation of muscarinic cholinergic or adenosine R-site receptors caused a marked inhibition of cAMP accumulation in nontreated cells in either the presence or absence of a beta-agonist (or glucagon); no such inhibition was essentially observed in IAP-treated cells. These actions of IAP developed gradually and were dose-dependent with the half-maximal concentration of approximately 80 ng/ml in culture. It is concluded that IAP may exert its unique influence on the heart cell membrane causing profound modification of the coupling mechanism involved in the receptor-mediated activation or inhibition of adenylate cyclase. This action of IAP differs clearly from that of cholera toxin which activates adenylate cyclase rather independently of the receptor functions in heart cells.  相似文献   

12.
In normal fed rats, glycogen synthase D phosphatase activity in a glycogen pellet preparation was only partially inhibited (approximately 50%) by high concentrations of EDTA. However, the proportion of phosphatase activity inhibited by EDTA was markedly and rapidly (15 s) increased following glucagon or cAMP administration. Epinephrine administration did not alter the proportion of activity inhibited by EDTA. Glucose administration rapidly (2 min) reduced the proportion of synthase phosphatase activity inhibitable by EDTA. That is, the effect of glucose was just the opposite of that produced by glucagon or cAMP. Insulin administration had no effect on phosphatase activity. Synthase phosphatase activity assayed in the absence of EDTA was similar in all groups except for a moderate increase after glucose administration. Addition of Mg2+ completely reversed EDTA inhibition. Phosphorylase phosphatase activity in each group was not modified by addition of EDTA, although the percentage of phosphorylase in the alpha form was higher in glucagon-treated and lower in the glucose-treated animals as expected. These data suggest the presence of rapidly interconvertible forms of either synthase phosphatase or its substrate synthase D, detectable as a change in EDTA inhibitability and subject to glucose and glucagon control.  相似文献   

13.
The process of evaluating the in vivo efficacy of non–peptidyl receptor antagonists in animal models is frequently complicated by failure of compounds displaying high affinity against the human receptors to show measurable affinity at the corresponding rodent receptors. In order to generate a suitable animal model in which to evaluate the in vivo activity of non–peptidyl glucagon receptor antagonists, we have utilized a direct targeting approach to replace the murine glucagon receptor with the human glucagon receptor gene by homologous recombination. Specific expression of the human glucagon receptor (GR) in the livers of transgenic mice was confirmed with an RNase protection assay, and the pharmacology of the human GRs expressed in the livers of these mice parallels that of human GR in a recombinant CHO cell line with respect to both binding of 125I–glucagon and the ability of glucagon to stimulate cAMP production. L–168,049, a non–peptidyl GR antagonist selective for the human GR shows a 3.5 fold higher affinity for liver membrane preparations of human GR expressing mice (IC50=172±98nM) in the presence of MgCl2 in marked contrast to the measured affinity of the murine receptor (IC50=611±97nM) for this non–peptidyl antagonist. The human receptors expressed are functional as measured by the ability of glucagon to stimulate cAMP production and the selectivity of this antagonist for the human receptor is further verified by its ability to block glucagon–stimulated cyclase activity with 5 fold higher potency (IC50=97.2±13.9nM) than for the murine receptor (IC50=504±247nM). Thus we have developed a novel animal model for evaluating GR antagonists in vivo. These mice offer the advantage that the regulatory sequences which direct tissue specific and temporal expression of the GR have been unaltered and thus expression of the human gene in these mice remains in the normal chromosomal context.  相似文献   

14.
We have studied the effect of several doses of GLP-1, compared to that of insulin and glucagons, on lipogenesis, lipolysis and cAMP cellular content, in human adipocytes isolated from normal subjects. In human adipocytes, GLP-1 exerts a dual action, depending upon the dose, on lipid metabolism, being lipogenic at low concentrations of the peptide (ED50, 10(-12) M), and lipolytic only at doses 10-100 times higher (ED50, 10(-10) M); both effects are time- and GLP-1 concentration-dependent. The GLP-1 lipogenic effect is equal in magnitude to that of equimolar amounts of insulin; both hormones apparently act synergically, and their respective action is abolished by glucagon. The lipolytic effect of GLP-1 is comparable to that of glucagon, apparently additive to it, and the stimulated value induced by either one is neutralized by the presence of insulin. In the absence of IBMX, GLP-1, at 10(-13) and 10(-12) M, only lipogenic doses, does not modify the cellular content of cAMP, while from 10(-11) M to 10(-9) M, also lipolytic concentrations, it has an increasing effect; in the presence of IBMX, GLP-1 at already 10(-12) M increased the cellular cAMP content. In human adipocytes, GLP-1 shows glucagon- and also insulin-like effects on lipid metabolism, suggesting the possibility of GLP-1 activating two distinct receptors, one of them similar or equal to the pancreatic one, accounting cAMP as a second messenger only for the lipolytic action of the peptide.  相似文献   

15.
Gu JJ  Zhao TY  Li XJ 《生理科学进展》2011,42(4):251-255
胰高血糖素是胰岛素最重要的拮抗激素,其从胰岛α细胞合成后分泌入血,与靶组织的胰高血糖素受体结合,激活靶信号通路,生成环一磷酸腺苷(cAMP),促进糖原分解和糖异生,升高血糖.愈来愈多的研究显示,通过抑制α细胞产生和分泌胰高血糖素、中和血循环胰高血糖素、胰高血糖素受体拮抗剂、抑制胰高糖素受体基因表达等干预胰高血糖素的信号通路的措施有可能成为治疗糖尿病的新方法.  相似文献   

16.
The effects of insulin, glucagon or Dexamethasone (DEX) and of glucagon with insulin or DEX were examined on the uptake of 2-amino [1-14C]isobutyric acid (AIB) and N-Methyl-2-amino [1-14C]isobutyric acid (NMe AIB) in monolayer cultures of rat hepatocytes. Insulin and glucagon stimulated the uptake of both the amino acids and DEX inhibited it, showing that all three of these hormones regulate the A system (the sodium-dependent system that permits the transport of NMe AIB) for amino acid transport in these cultures. Experiments investigating the transport of aminocyclopentane-1-carboxylic acid, 1- [carboxyl-14C] in the presence of excess AIB or in the absence of sodium showed that insulin had no effect on the activity of the L system (the sodium-independent system that prefers leucine). Experiments on the uptake of AIB in the presence of excess NMe AIB showed insulin had no effect on the transport activity of the ASC system (the sodium-dependent system that does not transport NEe AIB). Insulin concentrations ranging from 0.1 nM to 100 nM did not antagonize the stimulatory effect of optimum or suboptimum concentrations of glucagon on the uptake of either AIB or NMe AIB. Similarly, glucagon did not antagonize the stimulatory effect of optimum or suboptimum concentrations of insulin on the uptake of both the amino acids. The combined effect of insulin and glucagon was additive on the rate as well as the cumulative uptake of both AIB and NMe AIB. DEX alone inhibited the transport of both AIB and NMe AIB by about 25%, while glucagon caused a 2–3-fold increase; however, the addition of glucagon to cultures containing DEX caused a 7–8-fold increase in the uptake of both AIB and NMe AIB when compared to cultures containing DEX alone. The effect of insulin on the levels of cAMP was also investigated. Insulin had no effect on the cAMP levels in cultures treated or untreated with optimum or suboptimum concentrations of glucagon.  相似文献   

17.
The C-terminal domain of the Gs protein alpha subunit (Galphas Ct) and the first intracellular loop (iLP1) of prostacyclin receptor (IP) have been predicted to be involved in the receptor signaling mediated through the IP/Gs protein coupling by our previous NMR studies using synthetic peptides. To test whether the results of the peptide studies can be applied to the protein interaction between the IP receptor and the Gs protein in cells, a minigene technique was used to construct cDNAs that encoded either the amino acid residues of the Galphas or that of the individual intracellular loops of the IP receptor. The effects of the minigene-expressed protein fragments on cAMP production mediated by the IP/Gs coupling were evaluated through experiments that co-expressed peptides either through the Galphas Ct or the IP intracellular loops with the IP receptor in HEK293 cells. The first (iLP1) and third (iLP3) IP intracellular loops, as well as the Galphas Ct, which are important to the IP/Gs coupling-mediated signaling, were identified by the significant reduction of cAMP production when the corresponding peptides were expressed in the cells. Furthermore, the cAMP productions were significantly impaired in Galphas-knockout cells co-expressing the IP receptor with the Galphas C-terminal mutants (E392A, L393A and L394A), compared with the Galphas wild type. Blocking of the endogenous IP/Gs coupling by the minigene-expressed peptides of the Galphas CT, iLP1 and iLP3 was further observed in the human coronary artery smooth muscle cells (SMCs). These results indicate that the three residues (E392-L394) of the Galphas protein predicted from NMR peptide studies, and the IP iLP1 and iLP3 play important roles in the Galphas-mediated IP receptor signaling in the cells, which may be a general binding site for the corresponding regions of the other prostanoid receptors that couple to Gs protein.  相似文献   

18.
The human dopamine D2L (long form) and D2S (short form) receptors were expressed separately in mouse Ltk- fibroblast cells to investigate whether there is a difference in transmembrane signaling of these D2 receptors. Both receptors induced two signals, a phosphatidylinositol-linked mobilization of intracellular calcium and an inhibition of cyclic adenosine 3'-5' monophosphate (cAMP) accumulation, each with similar response magnitudes and identical pharmacology. Both calcium and cAMP signals were sensitive to pretreatment with pertussis toxin (PTX), indicating mediation by coupling to Gi/Go proteins. However, the two forms of D2 receptor were distinguished by acute prior activation of protein kinase C (PKC) with 12-O-tetradecanoyl 4 beta-phorbol 13-acetate (TPA): TPA blocked the D2S-mediated increase in cytosolic free calcium concentration ([Ca2+]i) in a concentration-dependent manner (between 10 nM and 1 microM), whereas the D2L receptor-induced increase in [Ca2+]i was resistant to TPA and was only partially (60%) inhibited by 100 microM TPA. By contrast, TPA did not alter the inhibition of cAMP accumulation induced by activation of either D2S or D2L receptors. We conclude that, in the L cell system, prior activation of PKC differentially modulates the transmembrane signaling of the D2L and D2S receptors, preferentially inhibiting the D2S receptor-mediated calcium signal but not altering the dopamine-induced inhibitory cAMP signal of either receptor subtype.  相似文献   

19.
The mRNA of the rat hepatic S14 gene accumulates rapidly after administration of T3 and carbohydrate, making it an excellent model for studies of the effects of dietary and hormonal stimuli at the hepatocellular level. We undertook studies to assess circadian changes in responsivity of this sequence to intragastric sucrose administration combined with insulin injection, and evaluated the capacity of glucagon to reverse these effects. As in the case of T3, the response of mRNA-S14 to carbohydrate in the morning was brisk whereas there was no significant increment when the stimulus was applied in the evening. In confirmation of previous studies, glucagon markedly lowered levels of mRNA-S14 in the evening but exerted no effect in the morning. These results support the concept that the rate of hepatic production of mRNA-S14 in unmanipulated rats is maximal in the evening, thus allowing no further induction by carbohydrate or T3 but permitting reduction by glucagon. Conversely, the rate of production is minimal in the morning, permitting induction by carbohydrate or T3 but allowing no further reduction by glucagon. A major difference between the effects of carbohydrate and those of T3 was the observed failure of carbohydrate to reverse the effect of glucagon in the evening. The effect of glucagon was stimulated by (Bu)2cAMP, and this was reversed by T3. However, T3 did not modify the glucagon-induced increase in hepatic cAMP levels. We therefore conclude that the capacity of T3 to abolish the glucagon effect is mediated at a step distal to the generation of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Albumin has a serum half-life of 3 weeks in humans. This has been utilized to extend the serum persistence of biopharmaceuticals that are fused to albumin. In light of the fact that the neonatal Fc receptor (FcRn) is a key regulator of albumin homeostasis, it is crucial to address how fusion of therapeutics to albumin impacts binding to FcRn. Here, we report on a detailed molecular investigation on how genetic fusion of a short peptide or an single-chain variable fragment (scFv) fragment to human serum albumin (HSA) influences pH-dependent binding to FcRn from mouse, rat, monkey, and human. We have found that fusion to the N- or C-terminal end of HSA only slightly reduces receptor binding, where the most noticeable effect is seen after fusion to the C-terminal end. Furthermore, in contrast to the observed strong binding to human and monkey FcRn, HSA and all HSA fusions bound very poorly to mouse and rat versions of the receptor. Thus, we demonstrate that conventional rodents are limited as preclinical models for analysis of serum half-life of HSA-based biopharmaceuticals. This finding is explained by cross-species differences mainly found within domain III (DIII) of albumin. Our data demonstrate that although fusion, particularly to the C-terminal end, may slightly reduce the affinity for FcRn, HSA is versatile as a carrier of biopharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号