首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The oxidation of butyrate, hexanoate and octanoate by rat-liver mitochondria suspended in a tris-potassium chloride medium in the presence of malate and serum albumin has been investigated. 2. The oxidation of butyrate to acetoacetate was markedly decreased by the addition of a system competitive for ATP (hexokinase-glucose). 3. Serum albumin or tricarboxylic acid-cycle intermediates prevented the inhibition by hexokinase and in their presence a greater proportion of the oxygen consumption was contributed by the tricarboxylic acid cycle. The results suggest that the energy supply for fatty acid activation is either compartmentalized in a spatial or kinetic sense or there exists a special activating mechanism not involving ATP. 4. Malate and other tricarboxylic acid-cycle intermediates caused substantial reduction (to beta-hydroxybutyrate) of the acetoacetate formed during the oxidation of butyrate, hexanoate and octanoate.  相似文献   

2.
1. During fatty acid oxidation by rat liver mitochondria, the rate of β-oxidation is dependent on the relative amounts of substrate and mitochondrial protein, on the energy state of the mitochondria, on the chain length and the number of double bonds of the fatty acid and on the concentration of various compounds in the reaction medium (l-carnitine, CoASH, hexokinase, albumin).2. The rate of β-oxidation of long-chain fatty acids decreases when the ratio of albumin over fatty acid is increased. This effect is most marked in the absence of added carnitine.3. Addition of excess hexokinase decreases the rate of β-oxidation in the presence of added carnitine.4. Maximal rates of β-oxidation are observed with octanoate and decanoate (40–60 nmoles acetyl-CoA/min per mg mitochondrial protein at 25 °C).5. Odd-numbered fatty acids are oxidized at a much lower rate than the even-numbered homologues. In a low-energy state propionyl-CoA accumulates; in a high-energy state in the presence of bicarbonate, Krebs-cycle intermediates accumulate.6. l-Carnitine enhances the rate of β-oxidation of all fatty acids except butyrate. The stimulatory effect is most pronounced with odd-numbered and with long-chain fatty acids.7. In the absence of added carnitine the rate of β-oxidation of long-chain fatty acids decreases with the chain length and increases with the number of double bonds. It is suggested that the solubility of the long-chain fatty acids in the aqueous medium is the rate-limiting factor under these conditions.8. In the presence of carnitine and albumin, palmitate, oleate, linoleate and linolenate are all oxidized at about the same rate (25–30 nmoles/min per mg protein at 25 °C).9. Propionyl-CoA is not formed as an intermediate during oxidation of unsaturated fatty acids.  相似文献   

3.
1. Oxygen-consumption rates owing to oxidation of octanoate or octanoylcarnitine by isolated mitochondria from livers of fed, starved and glucagon-treated virgin or 12-day-lactating animals were measured under State-3 and State-4 conditions, in the presence or absence of l-malate and inhibitors of tricarboxylic acid-cycle activity (malonate and fluorocitrate). 2. Mitochondria from fed lactating animals had a slightly lower rate of octanoylcarnitine oxidation than did those of fed virgin animals, whereas the rates of octanoate oxidation were unaffected. 3. Starvation of virgin animals for 24h or 48h resulted in a large (70–100%) increase in mitochondrial octanoylcarnitine oxidation; rates of octanoate oxidation were either unaffected (24 and 48h starvation in the absence of malonate and fluorocitrate) or diminished by 30% (48h starvation in the presence of inhibitors). In lactating animals, 24h starvation resulted in a smaller increase in the rate of octanoylcarnitine oxidation than that obtained for mitochondria from virgin rats. 4. Glucagon treatment (by intra-abdominal injection) of fed virgin and lactating rats increased the rate of mitochondrial oxidation of both octanoylcarnitine and octanoate. Injection of glucagon into 48h-starved virgin rats did not increase further the already elevated rate of octanoylcarnitine oxidation, but reversed the inhibition of octanoate β-oxidation observed for these mitochondria in the presence of malonate and fluorocitrate. 5. It is suggested that glucagon activates octanoylcarnitine oxidation by increasing the activity of the carnitine/acylcarnitine transport system [Parvin & Pande (1979) J. Biol. Chem. 254, 5423–5429] and that the increase in octanoate oxidation by mitochondria from glucagon-treated animals is caused by the increased rate of ATP synthesis in these mitochondria. 6. The results are discussed in relation to the increased capacity of the liver to oxidize long-chain fatty acids and carnitine esters of medium-chain fatty acids under conditions characterized by increased ketogenesis.  相似文献   

4.
We previously showed that a fraction of the acetyls used to synthesize malonyl-CoA in rat heart derives from partial peroxisomal oxidation of very long and long-chain fatty acids. The 13C labeling ratio (malonyl-CoA)/(acetyl moiety of citrate) was >1.0 with 13C-fatty acids, which yields [13C]acetyl-CoA in both mitochondria and peroxisomes and < 1.0 with substrates, which yields [13C]acetyl-CoA only in mitochondria. In this study, we tested the influence of 13C-fatty acid concentration and chain length on the labeling of acetyl-CoA formed in mitochondria and/or peroxisomes. Hearts were perfused with increasing concentrations of labeled docosanoate, oleate, octanoate, hexanoate, butyrate, acetate, or dodecanedioate. In contrast to the liver, peroxisomal oxidation of 1-13C-fatty acids in heart does not form [1-13C]acetate. With [1-13C]docosanoate and [1,12-13C2]dodecanedioate, malonyl-CoA enrichment plateaued at 11 and 9%, respectively, with no detectable labeling of the acetyl moiety of citrate. Thus, in the intact rat heart, docosanoate and dodecanedioate appear to be oxidized only in peroxisomes. With [1-13C]oleate or [1-13C]octanoate, the labeling ratio >1 indicates the partial peroxisomal oxidation of oleate and octanoate. In contrast, with [3-13C]octanoate, [1-13C]hexanoate, [1-13C]butyrate, or [1,2-13C2]acetate, the labeling ratio was <0.7 at all concentrations. Therefore, in rat heart, (i) n-fatty acids shorter than 8 carbons do not undergo peroxisomal oxidation, (ii) octanoate undergoes only one cycle of peroxisomal beta-oxidation, (iii) there is no detectable transfer to the mitochondria of acetyl-CoA from the cytosol or the peroxisomes, and (iv) the capacity of C2-C18 fatty acids to generate mitochondrial acetyl-CoA decreases with chain length.  相似文献   

5.
6.
In view of the importance of fatty acids as substrates for the mature heart, fatty acid oxidation by fetal and calf heart mitochondria has been investigated. Free fatty acids of 10 carbon units or less which exhibit carnitine-independent transport into mitochondria were effective substrates for oxidative phosphorylation in both fetal and calf heart mitochondria. Efficient oxidative phosphorylation with these substrates was dependent upon the presence of bovine serum albumin in the assay medium to reverse the uncoupling effects of the fatty acids. In the presence of bovine serum albumin, ADP/0 ratios were in the range of 3 when short-chain fatty acids and carnitine esters of short- and long-chain fatty acids were substrates. Compared with calf heart mitochondria, fetal heart mitochondria showed decreased carnitine-dependent oxidation of palmityl-CoA. However, the oxidation of palmitylcarnitine was identical in both. These data suggest that the formation of palmitylcarnitine is rate limiting for palmityl-CoA oxidation by the fetal heart mitochondria and that long-chain fatty acids are not readily oxidized by the fetal heart.  相似文献   

7.
The ability of carbohydrate fuels (lactate, pyruvate, glucose) and the ketone bodies (acetoacetate, beta-hydroxybutyrate) to compete with fatty acids as fuels of respiration in the isolated Langendorf-perfused heart was studied. Oleate and octanoate were used as fatty acid fuels since oleate requires carnitine for entry into mitochondria, whereas octanoate does not. The two ketone bodies inhibited the oxidation of both oleate and octanoate implying an intramitochondrial site of action. Pyruvate, lactate, and lactate plus glucose inhibited oleate oxidation but not octanoate oxidation, indicating a mechanism of inhibition that involves the carnitine system. Pyruvate was a more potent inhibitor than lactate at equal concentrations, but the effect of lactate could be greatly increased by dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase. The physiological and mechanistic implications of these observations are discussed.  相似文献   

8.
A previous study [Berry, M. N., Gregory, R. B., Grivell, A. R. & Wallace, P. G. (1983) Eur. J. Biochem. 131, 215-222] suggested that long-chain fatty acid (palmitate) oxidation by hepatocytes was less sensitive than short-chain fatty acid (hexanoate) oxidation to inhibition by a given concentration of antimycin. Re-examination of this phenomenon showed that palmitate oxidation by hepatocytes could be depressed by antimycin to the same degree as other NAD+-linked substrates, only if the concentration of the inhibitor was raised 2-4-fold. The presence of palmitate also reduced the sensitivity to antimycin of hepatocytes metabolizing lactate or pyruvate. Over the range of fatty acids tested, butyrate (C4) to stearate (C18), only long-chain (greater than C10) fatty acids endowed cells with decreased sensitivity towards antimycin. 2-Bromopalmitate, a non-metabolizable fatty acid, and inhibitor of fatty acid oxidation, also decreased the inhibitory effect of antimycin in cells, suggesting that long-chain fatty acids per se rather than their metabolites, reverse the inhibition by antimycin. Moreover, another inhibitor of fatty acid oxidation, 2-tetradecylglycidic acid, did not diminish the effects of palmitate. Succinate oxidation in isolated mitochondria that had been inhibited by a low concentration of antimycin could be restored by subsequent addition of palmitate or other long-chain fatty acids such as dodecanoate, tetradecanoate and oleate under conditions where fatty acid oxidation was prevented. 2-Bromopalmitate, likewise partially restored antimycin-depressed succinate oxidation. This amelioration of antimycin inhibition was counteracted by the addition of more antimycin and was not seen upon addition of defatted bovine serum albumin, palmitoylcarnitine or octanoate. The total amount of antimycin bound to mitochondria was not affected by the presence of palmitate. The data suggest that long-chain fatty acids are able to interact with the mitochondrial inner membrane in a manner which can relieve the inhibitory effect of antimycin, whether the antimycin is added to the cell or mitochondrial suspension before or after fatty acid addition.  相似文献   

9.
1. A technique is described for the rapid separation of intestinal epithelial cells from the incubation medium by passage through a silicon-oil layer and collection in acid, in which their soluble constituents are released. 2. The inhibition by fatty acids of pyruvate oxidation is further studied. Measurement of pyruvate transport in epithelial cells at 0 degree C showed that short- and medium-chain fatty acids as well as ricinoleate inhibit this transport. Propionate inhibits pyruvate transport by another mechanism than octanoate. 3. Differences between pyruvate propionate and octanoate transport across the epithelial cell membrane were obtained in efflux studies. These studies revealed that acetate, propionate, butyrate and high concentrations of bicarbonate readily stimulate the efflux of pyruvate, probably by anionic counter-transport. No effects were seen with octanoate and hexanoate. The data obtained in these efflux studies suggest that lipophilicity and the pKa values of the monocarboxylic acids determine the contribution of non-ionic diffusion to overall transport. 4. Saturation kinetics, competitive inhibition by short-chain fatty acids and counter-transport suggest a carrier-mediated transport of pyruvate.  相似文献   

10.
The effect of octanoate on the oxidative decarboxylation of 14C-labeled amino acids has been studied in perfused hindquarter and liver of rat. Regulation of the branched-chain α-keto acid dehydrogenase has been further studied with α-[14C-1]ketoisovalerate in isolated rat muscle and liver mitochondria. (1) Octanoate has a stimulatory effect on the oxidation of branched-chain amino acids in perfused hindquarter. The oxidative decarboxylation of other amino acids are inhibited. Octanoate inhibits the oxidative decarboxylation of all amino acids in perfused liver. (2) The oxidation of valine is stimulated by octanoate and hexanoate also in isolated muscle mitochondria. The stimulatory effect is probably related to activation of the fatty acids since acyl-carnitines inhibit the oxidation. (3) The oxidation of α-ketoisovalerate in mitochondria is inhibited by competing substrates (pyruvate, α-ketoglutarate and succinate). This inhibition is counteracted by octanoate and ADP. (4) Low concentrations (1–5 μM) of 2,4-dinitrophenol (DNP) activates wheras higher concentrations inactivates the branched-chain α-keto acid dehydrogenase in intact but not in solubilized muscle mitochondria. The inactivation is counteracted by ATP, but is increased by octanoate. (5) The observations seem to suggest that the activation (like the inactivation) of branched-chain α-keto acid dehydrogenase in skeletal muscle is dependent on the mitochondrial energy state which therefore may regulate both activation and inactivation of the dehydrogenase.  相似文献   

11.
Ketogenesis from endogenous fatty acids or from exogenous octanoate has been studied in isolated hepatocytes from fetal. 24-h-old newborn and adult rabbit. In fed adult rabbits, endogenous ketogenesis is low and increases sixfold in the presence of 2 mM octanoate. At birth, endogenous ketogenesis is low and markedly increases 24 h after birth but, in both cases, the addition of 2 mM octanoate does not increase the rates of ketone body production. Hepatocytes isolated from 24-h-old newborn or fed adult rabbits and incubated with [1-14C]octanoate show a preferential channeling of fatty acid into oxidation (84-92% of octanoate metabolized). In contrast, esterification represents 43% of the amount of octanoate metabolized at birth. Chromatographic analysis of labelled triacylglycerols shows that 76 +/- 2% of labelled fatty acids are identified as octanoate and all of the radioactivity in the octanoate peak is due to the carboxyl carbon. In hepatocytes from term fetus, the low capacity for octanoate oxidation is associated with a high capacity for esterification, whatever the octanoate concentration in the medium. Octanoate activated to octanoyl-CoA in the cytosol of fetal hepatocyte is not oxidized in the mitochondria since carnitine acyltransferase I has a low activity at birth in the rabbit. This suggests that only a part of the octanoate pool is activated outside the mitochondria. Factors involved in the direct esterification of octanoate into triacylglycerols in term fetal hepatocytes are discussed.  相似文献   

12.
The large increase in cyclic AMP accumulation by rat white fat cells seen in the presence of lipolytic agents plus methylxanthines and adenosine deaminase was markedly inhibited by lactate. However, lipolysis was unaffected by lactate. Octanoate, hexanoate, heptanoate, and beta-hydroxybutyrate inhibited both cyclic AMP accumulation and lipolysis by rat fat cells. The mechanism by which these acids inhibit lipolysis differs from that for long chain fatty acids such as oleate. Oleate directly inhibited triglyceride lipase activity of homogenized rat adipose tissue. In contrast, octanoate, beta-hydroxybutyrate, and lacatate had no effect on triglyceride lipase activity. Hormone-stimulated adenylate cyclase activity of rat fat cell ghosts was inhibited by oleate and 4mM octanoate but not by 1.6 mM octanoate, heptanoate, hexanoate, beta-hydroxybutyrate or lactate. None of the acids affected the soluble protein kinase activity of rat adipose tissue. There was no stimulation by lactate, butyrate, beta-hydroxybutyrate, or octanoate of the soluble or particulate cyclic AMP antilipolytic action of a short chain acid such as octanoate or hexanoate was not accompanied by any drop in total fat cell ATP. The mechanism by which lactate lowers cyclic AMP but not lipolysis remains to be established.  相似文献   

13.
The dragonfly, Pantala flavescens, remains air-borne for many hours and should be expected to utilize fat during its prolonged flight. In vitro studies on fatty acid oxidation in the flight muscles of this insect have revealed that the muscles are capable of oxidizing butyrate, octanoate, palmitate, and stearate. However, there seems to be a preferential oxidation of short chain fatty acids. Added carnitine appears to have a stimulatory effect on palmitic acid oxidation in the homogenate as well as in the mitochondrial preparation.  相似文献   

14.
Livers of genetically obese Zucker rats showed, compared with lean controls, hypertrophy and enrichment in triacylglycerols, indicating that fatty acid metabolism was directed towards lipogenesis and esterification rather than towards fatty acid oxidation. Mitochondrial activities of cytochrome c oxidase and monoamine oxidase were significantly lower when expressed per g wet wt. of liver, whereas peroxisomal activities of urate oxidase and palmitoyl-CoA-dependent NAD+ reduction were unchanged. Liver mitochondria were able to oxidize oleic acid at the same rate in both obese and lean rats. For reactions occurring inside the mitochondria, e.g. octanoate oxidation and palmitoyl-CoA dehydrogenase, no difference was found between both phenotypes. Total carnitine palmitoyl-, octanoyl- and acetyl-transferase activities were slightly higher in mitochondria from obese rats, whereas the carnitine content of both liver tissue and mitochondria was significantly lower in obese rats compared with their lean littermates. The carnitine palmitoyltransferase I activity was slightly higher in liver mitochondria from obese rats, but this enzyme was more sensitive to malonyl-CoA inhibition in obese than in lean rats. The above results strongly suggest that the impaired fatty acid oxidation observed in the whole liver of obese rats is due to the diminished transport of fatty acids across the mitochondrial inner membrane via the carnitine palmitoyltransferase I. This effect could be reinforced by the decreased mitochondrial content per g wet wt. of liver. The depressed fatty acid oxidation may explain in part the lipid infiltration of liver observed in obese Zucker rats.  相似文献   

15.
The steady state levels of mitochondrial acyl-CoAs produced during the oxidation of pyruvate, alpha-ketoisovalerate, alpha-ketoisocaproate, and octanoate during state 3 and state 4 respiration by rat heart and liver mitochondria were determined. Addition of carnitine lowered the amounts of individual short-chain acyl-CoAs and increased CoASH in a manner that was both tissue- and substrate-dependent. The largest effects were on acetyl-CoA derived from pyruvate in heart mitochondria using either state 3 or state 4 oxidative conditions. Carnitine greatly reduced the amounts of propionyl-CoA derived from alpha-ketoisovalerate, while smaller effects were obtained on the branched-chain acyl-CoA levels, consistent with the latter acyl moieties being poorer substrates for carnitine acetyltransferase and also poorer substrates for the carnitine/acylcarnitine translocase. The levels of acetyl-CoA in heart and liver mitochondria oxidizing octanoate during state 3 respiration were lower than those obtained with pyruvate. The rate of acetylcarnitine efflux from heart mitochondria during state 3 (with pyruvate or octanoate as substrate, in the presence or absence of malate with 0.2 mM carnitine) shows a linear response to the acetyl-CoA/CoASH ratio generated in the absence of carnitine. This relationship is different for liver mitochondria. These data demonstrate that carnitine can modulate the aliphatic short-chain acyl-CoA/CoA ratio in heart and liver mitochondria and indicate that the degree of modulation varies with the aliphatic acyl moiety.  相似文献   

16.
Fatty acid-dependent ethanol metabolism   总被引:1,自引:0,他引:1  
Rates of ethanol oxidation by perfused livers from fasted female rats were decreased from 82 +/- 8 to 11 +/- 7 mumol/g/hr by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase. The subsequent addition of fatty acids of various chain lengths in the presence of 4-methylpyrazole increased rates of ethanol uptake markedly. Palmitate (1 mM) increased rates of ethanol oxidation to 95 +/- 8 mumol/g/hr, while octanoate and oleate increased rates to 58 +/- 11 and 68 +/- 15 mumol/g/hr, respectively. Hexanoate, a short-chain fatty acid oxidized predominantly in the mitochondria, had no effect. Addition of oleate also increased the steady-state level of catalase-H2O2. Pretreatment of rats for 1.5 hours with 3-amino-1,2,4-triazole (1.0 g/kg), an inhibitor of catalase, prevented the ethanol-dependent decrease in the steady-state level of catalase-H2O2 completely. Under these conditions, aminotriazole decreased rates of ethanol oxidation by about 50% and blocked the stimulation of ethanol oxidation by fatty acids. Oleate decreased rates of aniline hydroxylation by about 50%, indicating that cytochrome P450 is not involved in the stimulation of ethanol uptake by fatty acids. Furthermore, oleate stimulated ethanol uptake in livers from ADH-negative deermice indicating that fatty acids do not simply displace 4-methylpyrazole from alcohol dehydrogenase. It is concluded that the stimulation of ethanol oxidation by fatty acids is due to increased H2O2 supplied by the peroxisomal beta-oxidation of fatty acids for the catalase-H2O2 peroxidation pathway.  相似文献   

17.
Interaction of various compounds with the 14CO2 production from [1-14C]-labelled branched-chain 2-oxo acids was studied in intact rat quadriceps muscle and liver mitochrondria. In the absence of carnitine, CoA esters of short-chain and branched-chain fatty acids, CoA and acetyl-L-carnitine stimulated oxidation of 4-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate in muscle mitochondria. Octanoyl-L-carnitine inhibited oxidation of the latter, but stimulated that of the former substrate. Isovaleryl-L-carnitine was inhibitory with both substrates. Carnitine stimulates markedly 3-methyl-2-oxobutanoate oxidation in liver mitochondria at substrate concentrations higher than 0.1 mM, in contrast to 4-methyl-2-oxopentanoate oxidation. In the presence of carnitine, 3-methyl-2-oxobutanoate oxidation was inhibited in muscle and liver mitochondria by octanoate, octanoyl-L-carnitine and isovaleryl-L-carnitine. The latter ester and octanoyl-D-carnitine inhibited also 4-methyl-2-oxopentanoate oxidation in muscle mitochondria. Branched-chain 2-oxo acids inhibited mutaly their oxidation, except that 3-methyl-2-oxobutanoate did not inhibit 4-methyl-2-oxopentanoate oxidation in liver mitochondria. Their degradation products, isovalerate, 3-methylcrotonate, isobutyrate and 3-hydroxyisobutyrate inhibited to a different extent 2-oxo acid oxidation in liver mitochondria. The effect of CoA esters was studied in permeabilized and with cofactors reinforced mitochondria. Acetyl-CoA and isovaleryl-CoA inhibited only 3-methyl-2-oxobutanoate oxidation in muscle mitochondria. Octanoyl-CoA inhibited oxidation of both 2-oxo acids in muscle and 4-methyl-2-oxopentanoate oxidation in liver mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
L-Carnitine transport and free fatty acid oxidation have been studied in hearts of rats with 3-month-old aorto-caval fistula. For carnitine transport experiments, the hearts were perfused via the ascending aorta with a bicarbonate buffer containing 11 mM glucose and variable concentrations L-[14C]carnitine (10-200 microM). In some experiments, the active component of carnitine transport was suppressed by the adjunction of 0.05 mM mersalyl acid. The subtraction of passive from total transport allowed reconstruction of the saturation curves of the carrier-mediated transport of L-carnitine. Our data suggest that at a physiological carnitine concentration (50 microM), the rate of [14C]carnitine accumulation was significantly depressed in mechanically overloaded hearts. In addition, according to Lineweaver-Burk analysis, the affinity of the membrane carrier for L-carnitine was considerably diminished (Km carnitine 125 instead of 83 microM, Vmax unchanged). The above alterations of L-carnitine transport did not result from a decrease of the transmembrane gradient of sodium, since the intracellular Na+ content of the hypertrophied hearts was quite similar to that of control hearts. The ability of atrially perfused, working hearts to oxidize the exogenous free fatty acids was assessed from 14CO2 production obtained in the presence of [U-14C]palmitate or [1-14C]octanoate. The total 14CO2 production, expressed per min per g dry weight, was significantly diminished in hearts from rats with the aorto-caval fistula if 1.2 mM palmitate was used. On the other hand, in the presence of 2.4 mM octanoate, a substrate which circumvents the carnitine-acylcarnitine translocase, no such reduction of the 14CO2 production could be detected. Our results suggest that the decrease of L-carnitine transport, resulting in a significant depression of tissue carnitine, may impair long-chain fatty acid activation and/or translocation into mitochondria. In contrast, the oxidation of short-chain fatty acids, the activation of which takes place directly in mitochondrial matrix, is not limited in volume-overloaded hearts.  相似文献   

19.
1. The CoA and carnitine esters of 2-bromopalmitate are extremely powerful and specific inhibitors of mitochondrial fatty acid oxidation. 2. 2-Bromopalmitoyl-CoA, added as such or formed from 2-bromopalmitate, inhibits the carnitine-dependent oxidation of palmitate or palmitoyl-CoA, but not the oxidation of palmitoylcarnitine, by intact liver mitochondria. 3. 2-Bromopalmitoylcarnitine inhibits the oxidation of palmitoylcarnitine as well as that of palmitate or palmitoyl-CoA. It has no effect on succinate oxidation, but inhibits that of pyruvate, 2-oxoglutarate or hexanoate; however, the oxidation of these substrates (but not of palmitate, palmitoyl-CoA or palmitoyl-carnitine) is restored by carnitine. 4. In damaged mitochondria, added 2-bromopalmitoyl-CoA does inhibit palmitoylcarnitine oxidation; pyruvate oxidation is unaffected by the inhibitor alone, but is impaired if palmitoylcarnitine is subsequently added. 5. The findings have been interpreted as follows. 2-Bromopalmitoyl-CoA inactivates (in a carnitine-dependent manner) a pool of carnitine palmitoyltransferase which is accessible to external acyl-CoA. This results in inhibition of palmitate or palmitoyl-CoA oxidation. A second pool of carnitine palmitoyltransferase, inaccessible to added acyl-CoA in intact mitochondria, can generate bromopalmitoyl-CoA within the matrix from external 2-bromopalmitoylcarnitine; this reaction is reversible. Such internal 2-bromopalmitoyl-CoA inactivates long-chain beta-oxidation (as does added 2-bromopalmitoyl-CoA if the mitochondria are damaged) and its formation also sequesters intramitochondrial CoA. Since this CoA is shared by pyruvate and 2-oxoglutarate dehydrogenases, the oxidation of their substrates is depressed by 2-bromopalmitoylcarnitine, unless free carnitine is available to act as a ;sink' for long-chain acyl groups. 6. These effects are compared with those reported for other inhibitors of fatty acid oxidation.  相似文献   

20.
Fatty acid β-oxidation may occur in both mitochondria and peroxisomes. While peroxisomes oxidize specific carboxylic acids such as very long-chain fatty acids, branched-chain fatty acids, bile acids, and fatty dicarboxylic acids, mitochondria oxidize long-, medium-, and short-chain fatty acids. Oxidation of long-chain substrates requires the carnitine shuttle for mitochondrial access but medium-chain fatty acid oxidation is generally considered carnitine-independent. Using control and carnitine palmitoyltransferase 2 (CPT2)- and carnitine/acylcarnitine translocase (CACT)-deficient human fibroblasts, we investigated the oxidation of lauric acid (C12:0). Measurement of the acylcarnitine profile in the extracellular medium revealed significantly elevated levels of extracellular C10- and C12-carnitine in CPT2- and CACT-deficient fibroblasts. The accumulation of C12-carnitine indicates that lauric acid also uses the carnitine shuttle to access mitochondria. Moreover, the accumulation of extracellular C10-carnitine in CPT2- and CACT-deficient cells suggests an extramitochondrial pathway for the oxidation of lauric acid. Indeed, in the absence of peroxisomes C10-carnitine is not produced, proving that this intermediate is a product of peroxisomal β-oxidation. In conclusion, when the carnitine shuttle is impaired lauric acid is partly oxidized in peroxisomes. This peroxisomal oxidation could be a compensatory mechanism to metabolize straight medium- and long-chain fatty acids, especially in cases of mitochondrial fatty acid β-oxidation deficiency or overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号