首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The starter unit used in the biosynthesis of daunorubicin is propionyl coenzyme A (CoA) rather than acetyl-CoA, which is used in the production of most of the bacterial aromatic polyketides studied to date. In the daunorubicin biosynthesis gene cluster of Streptomyces peucetius, directly downstream of the genes encoding the beta-ketoacyl:acyl carrier protein synthase subunits, are two genes, dpsC and dpsD, encoding proteins that are believed to function as the starter unit-specifying enzymes. Recombinant strains containing plasmids carrying dpsC and dpsD, in addition to other daunorubicin polyketide synthase (PKS) genes, incorporate the correct starter unit into polyketides made by these genes, suggesting that, contrary to earlier reports, the enzymes encoded by dpsC and dpsD play a crucial role in starter unit specification. Additionally, the results of a cell-free synthesis of 21-carbon polyketides from propionyl-CoA and malonyl-CoA that used the protein extracts of recombinant strains carrying other daunorubicin PKS genes to which purified DpsC was added suggest that this enzyme has the primary role in starter unit discrimination for daunorubicin biosynthesis.  相似文献   

2.
The structure of the Streptomyces sp. strain C5 daunorubicin type II polyketide synthase (PKS) gene region is different from that of other known type II PKS gene clusters. Directly downstream of the genes encoding ketoacylsynthase alpha and beta (KS alpha, KS beta) are two genes (dpsC, dpsD) encoding proteins of unproven function, both absent from other type II PKS gene clusters. Also in contrast to other type II PKS clusters, the gene encoding the acyl carrier protein (ACP), dpsG, is located about 6.8 kbp upstream of the genes encoding the daunorubicin KS alpha and KS beta. In this work, we demonstrate that the minimal genes required to produce aklanonic acid in heterologous hosts are dpsG (ACP), dauI (regulatory activator), dpsA (KS alpha), dpsB (KS beta), dpsF (aromatase), dpsE (polyketide reductase), and dauG (putative deoxyaklanonic acid oxygenase). The two unusual open reading frames, dpsC (KASIII homolog lacking a known active site) and dpsD (acyltransferase homolog), are not required to synthesize aklanonic acid. Additionally, replacement of dpsD or dpsCD in Streptomyces sp. strain C5 with a neomycin resistance gene (aphI) results in mutant strains that still produced anthracyclines.  相似文献   

3.
Räty K  Kantola J  Hautala A  Hakala J  Ylihonko K  Mäntsälä P 《Gene》2002,293(1-2):115-122
We have cloned and sequenced polyketide synthase (PKS) genes from the aclacinomycin producer Streptomyces galilaeus ATCC 31,615. The sequenced 13.5-kb region contained 13 complete genes. Their organization as well as their protein sequences showed high similarity to those of other type II PKS genes. The continuous region included the genes for the minimal PKS, consisting of ketosynthase I (aknB), ketosynthase II (aknC), and acyl carrier protein (aknD). These were followed by the daunomycin dpsC and dpsD homologues (aknE2 and F, respectively), which are rare in type II PKS clusters. They are associated with the unusual starter unit, propionate, used in the biosynthesis of aklavinone, a common precursor of aclacinomycin and daunomycin. Accordingly, when aclacinomycins minimal PKS genes were substituted for those of nogalamycin in the plasmid carrying genes for auramycinone biosynthesis, aklavinone was produced in the heterologous hosts. In addition to the minimal PKS, the cloned region included the PKS genes for polyketide ketoreductase (aknA), aromatase (aknE1) and oxygenase (aknX), as well as genes putatively encoding an aklanonic acid methyl transferase (aknG) and an aklanonic acid methyl ester cyclase (aknH) for post-polyketide steps were found. Moreover, the region carried genes for an activator (aknI), a glycosyl transferase (aknK) and an epimerase (aknL) taking part in deoxysugar biosynthesis.  相似文献   

4.
W Bao  P J Sheldon  C R Hutchinson 《Biochemistry》1999,38(30):9752-9757
Biosynthesis of the polyketide-derived carbon skeleton of daunorubicin (DNR) begins with propionate rather than acetate, which is the starter unit for most other aromatic polyketides. The dpsCgene has been implicated in specifying the unique propionate-starter unit, and it encodes a protein that is very similar to the Escherichia coli beta-ketoacyl:acyl carrier protein (ACP) synthase III (FabH or KS III) enzyme of fatty acid biosynthesis. Purified DpsC was found to use propionyl-coenzyme A as substrate and to be acylated by propionate at the Ser-118 residue. DpsC exhibits KS III activity in catalyzing the condensation of propionyl-CoA and malonyl-ACP, and also functions as an acyltransferase in the transfer of propionate to an ACP. The DpsC enzyme has a high-substrate specificity, utilizing only propionyl-CoA, and not malonyl-CoA, 2-methylmalonyl-CoA or acetyl-CoA, as the starter unit of DNR biosynthesis.  相似文献   

5.
Florova G  Kazanina G  Reynolds KA 《Biochemistry》2002,41(33):10462-10471
Malonyl acyl carrier protein (ACP) is used as an extender unit in each of the elongation steps catalyzed by the type II dissociated fatty acid synthase (FAS) and polyketide synthase (PKS) of Streptomyces glaucescens. Initiation of straight-chain fatty acid biosynthesis by the type II FAS involves a direct condensation of acetyl-CoA with this malonyl-ACP to generate a 3-ketobutyryl-ACP product and is catalyzed by FabH. In vitro experiments with a reconstituted type II PKS system in the absence of FabH have previously shown that the acetyl-ACP (generated by decarboxylation of malonyl-ACP), not acetyl-CoA, is used to initiate tetracenomycin C (TCM C) biosynthesis. We have shown that sgFabH activity is present in S. glaucescens fermentations during TCM C production, suggesting that it could contribute to initiation of TCM C biosynthesis in vivo. Isotope incorporation studies with [CD3]acetate and [13CD3]acetate demonstrated significant intact retention of three deuteriums into the starter unit of palmitate and complete washout of deuterium label into the starter unit of TCM C. These observations provide evidence that acetyl-CoA is not used directly as a starter unit for TCM C biosynthesis in vivo and argue against an involvement of FabH in this process. Consistent with this conclusion, assays of the purified recombinant sgFabH with acetyl-CoA demonstrated activity using malonyl-ACP generated from either FabC (the S. glaucescens FAS ACP) (k(cat) 42.2 min(-1), K(m) 4.5 +/- 0.3 microM) or AcpP (the E. coli FAS ACP) (k(cat) 7.5 min(-1), K(m) 6.3 +/- 0.3 microM) but not TcmM (the S. glaucescens PKS ACP). In contrast, the sgFabD which catalyzes conversion of malonyl-CoA to malonyl-ACP for fatty acid biosynthesis was shown to be active with TcmM (k(cat) 150 min(-1), K(m) 12.2 +/- 1.2 microM), AcpP (k(cat) 141 min(-1), K(m) 13.2 +/- 1.6 microM), and FabC (k(cat) 560 min(-1), K(m) 12.7 +/- 2.6 microM). This enzyme was shown to be present during TCM C production and could play a role in generating malonyl-ACP for both processes. Previous demonstrations that the purified PKS ACPs catalyze self-malonylation and that a FabD activity is not required for polyketide biosynthesis are shown to be an artifact of the expression and purification protocols. The relaxed ACP specificity of FabD and the lack of a clear alternative are consistent with a role of FabD in providing malonyl-ACP precursors for PKS as well as FAS processes. In contrast, the ACP specificity of FabH, isotope labeling studies, and a demonstrated alternative mechanism for initiation of the PKS process provide unequivocal evidence that FabH is involved only in the FAS process.  相似文献   

6.
Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.  相似文献   

7.
A stable-isotope assay was used to analyze the effectiveness of various perdeuterated short-chain acyl coenzyme A (acyl-CoA) compounds as starter units for straight- and branched-chain fatty acid biosynthesis in cell extracts of Streptomyces collinus. In these extracts perdeuterated isobutyryl-CoA was converted to isopalmitate (a branched-chain fatty acid), while butyryl-CoA was converted to palmitate (a straight-chain fatty acid). These observations are consistent with previous in vivo analyses of fatty acid biosynthesis in S. collinus, which suggested that butyryl-CoA and isobutyryl-CoA function as starter units for palmitate and isopalmitate biosynthesis, respectively. Additionally, in vitro analysis demonstrated that acetyl-CoA can function as a starter unit for palmitate biosynthesis. Palmitate biosynthesis and isopalmitate biosynthesis in these cell extracts were both effectively inhibited by thiolactomycin, a known type II fatty acid synthase inhibitor. In vivo experiments demonstrated that concentrations of thiolactomycin ranging from 0.1 to 0.2 mg/ml produced both a dramatic decrease in the cellular levels of branched-chain fatty acids and a surprising three- to fivefold increase in the cellular levels of the straight-chain fatty acids palmitate and myristate. Additional in vivo incorporation studies with perdeuterated butyrate suggested that, in accord with the in vitro studies, the biosynthesis of the palmitate from butyryl-CoA decreases in the presence of thiolactomycin. In contrast, in vivo incorporation studies with perdeuterated acetate demonstrated that the biosynthesis of palmitate from acetyl-CoA increases in the presence of thiolactomycin. These observations clearly demonstrate that isobutyryl-CoA is a starter unit for isopalmitate biosynthesis and that either acetyl-CoA or butyryl-CoA can be a starter unit for palmitate biosynthesis in S. collinus. However, the pathway for palmitate biosynthesis from acetyl-CoA is less sensitive to thiolactomycin, and it is suggested that the basis for this difference is in the initiation step.  相似文献   

8.
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity.  相似文献   

9.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

10.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

11.
Streptomyces peucetius, producer of the antitumor anthracycline antibiotic daunorubicin, was mutagenized, and mutants defective in daunorubicin biosynthesis were screened. One mutant (SPVI), which failed to produce daunorubicin, was found to overproduce an extracellular chitinase. Time course analyses of chitinase production and of the extracellular protein profile showed that the increase in activity is due to increased synthesis of the enzyme protein. The production of chitinase in SPVI was repressed by glucose as in the case of wild-type S. peucetius. PFGE analysis of VspI restriction fragments of S. peucetius and SPVI showed that there was no major alteration in the mutant genome. The hybridization pattern of S. peucetius and SPVI genomic DNA digested with various restriction enzymes was identical when probed with dnrUVJI genes of the S. peucetius daunorubicin cluster and chiA of Streptomyces lividans 66. The possible step affected in the daunorubicin biosynthetic pathway could be a polyketide synthase, since aklanonic acid, the earliest detectable intermediate in the daunorubicin pathway, was not synthesized in SPVI.  相似文献   

12.
Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA.  相似文献   

13.
Mutations in the Streptomyces peucetius dnrD gene block the ring cyclization leading from aklanonic acid methyl ester (AAME) to aklaviketone (AK), an intermediate in the biosynthetic pathway to daunorubicin (DNR) and doxorubicin. To investigate the role of DnrD in this transformation, its gene was overexpressed in Escherichia coli and the DnrD protein was purified to homogeneity and characterized. The enzyme was shown to catalyze the conversion of AAME to AK presumably via an intramolecular aldol condensation mechanism. In contrast to the analogous intramolecular aldol cyclization catalyzed by the TcmI protein from the tetracenomycin (TCM) C pathway in Streptomyces glaucescens, where a tricyclic anthraquinol carboxylic acid is converted to its fully aromatic tetracyclic form, the conversion catalyzed by DnrD occurs after anthraquinone formation and requires activation of a carboxylic acid group by esterification of aklanonic acid, the AAME precursor. Also, the cyclization is not coupled with a subsequent dehydration step that would result in an aromatic ring. As the substrates for the DnrD and TcmI enzymes are among the earliest isolable intermediates of aromatic polyketide biosynthesis, an understanding of the mechanism and active site topology of these proteins will allow one to determine the substrate and mechanistic parameters that are important for aromatic ring formation. In the future, these parameters may be able to be applied to some of the earlier polyketide cyclization processes that currently are difficult to study in vitro.  相似文献   

14.
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity.  相似文献   

15.
We recently described the isolation and sequence analysis of the daunomycin polyketide synthase biosynthesis genes of Streptomyces sp. strain C5 (J. Ye, M. L. Dickens, R. Plater, Y. Li, J. Lawrence, and W. R. Strohl, J. Bacteriol. 176:6270-6280, 1994). Contiguous to the daunomycin polyketide synthase biosynthesis gene region in Streptomyces sp. strain C5 are four additional genes involved in daunomycin biosynthesis, two of the products of which show similarity to different types of methyltransferases. The dauC gene, encoding aklanonic acid methyltransferase (AAMT), complements dauC-blocked mutants of Streptomyces sp. strain C5, restores in vitro AAMT activities to the mutant strains, and confers in vitro AAMT activity on Streptomyces lividans. Partial purification through gel filtration, followed by photoaffinity labeling of enriched AAMT with S-adenosyl-L-[3H-methyl]methionine, indicates that AAMT is a homodimer with an M(r) of ca. 48,000 (subunit M(r) of ca. 24,000), which corresponds with the size of the deduced gene product. The dauD gene, encoding aklanonic acid methyl ester cyclase, is divergently arranged with respect to dauC. Immediately downstream and apparently translationally coupled with dauD is the dauK gene, encoding carminomycin 4-O-methyltransferase. The dauK gene confers in vitro carminomycin 4-O-methyltransferase activity on S. lividans and is nearly identical to a similar gene isolated from Streptomyces peucetius and characterized. Directly downstream of dauK lies a gene encoding a deduced protein that is similar to the methyl esterases.  相似文献   

16.
Sthapit B  Oh TJ  Lamichhane R  Liou K  Lee HC  Kim CG  Sohng JK 《FEBS letters》2004,566(1-3):201-206
Enediyne antibiotics are known for their potent antitumor activities. One such enediyne, neocarzinostatin (NCS), consists of a 1:1 complex of non-peptide chromophore (1a), and peptide apoprotein. The structurally diverse non-peptide chromophore is responsible for its biological activity. One of its structural components, the naphthoic acid moiety (2,7-dihydroxy-5-methyl-1-naphthoic acid, 1d) is synthesized by a polyketide synthase (PKS) pathway through condensing six intact acetate units. The 5.45 kb iterative type I PKS, neocarzinostatin naphthoate synthase (NNS), responsible for naphthoic acid moiety biosynthesis, shares sequence homology with 6-methyl salicylic acid synthase of fungi and orsellinic acid synthases (AviM and CalO5) of Streptomyces origin. Cultures of S. lividans TK24 and S. coelicolor YU105 containing plasmids with NNS were able to produce 2-hydroxy-5-methyl-1-naphthoic acid (2a), a key intermediate of naphthoic acid moiety in NCS. In addition to 2a, a novel product, 2-hydroxy-5-hydroxymethyl-1-naphthoic acid (2d) was isolated. This is the first report of a bacterial iterative type I PKS from an enediyne producer which enables the biosynthesis of bicyclic aromatic compounds.  相似文献   

17.
The biosynthesis of the aromatic polyene macrolide antibiotic candicidin, produced by Streptomyces griseus IMRU 3570, begins with a p-aminobenzoic acid (PABA) molecule which is activated to PABA-CoA and used as starter for the head-to-tail condensation of four propionate and 14 acetate units to produce a polyketide molecule to which the deoxysugar mycosamine is attached. Using the gene coding for the PABA synthase ( pabAB) from S. griseusIMRU 3570 as the probe, a 205-kb region of continuous DNA from the S. griseus chromosome was isolated and partially sequenced. Some of the genes possibly involved in the biosynthesis of candicidin were identified including part of the modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport, and regulatory proteins. The regulatory mechanisms involved in the production of candicidin, such as phosphate regulation, were studied using internal probes for some of the genes involved in the biosynthesis of the three moieties of candicidin (PKS, aromatic moiety and amino sugar). mRNAs specific for these genes were detected only in the production medium (SPG) but not in the SPG medium supplemented with phosphate or in the inoculum medium, indicating that phosphate represses the expression of genes involved in candicidin biosynthesis. The modular architecture of the candicidin PKS and the availability of the PKSs involved in the biosynthesis of three polyene antibiotics (pimaricin, nystatin, and amphotericin B) shall make possible the creation of new, less toxic and more active polyene antibiotics through combinatorial biosynthesis and targeted mutagenesis.  相似文献   

18.
Geldanamycin and the closely related herbimycins A, B, and C were the first benzoquinone ansamycins to be extensively studied for their antitumor properties as small-molecule inhibitors of the Hsp90 protein chaperone complex. These compounds are produced by two different Streptomyces hygroscopicus strains and have the same modular polyketide synthase (PKS)-derived carbon skeleton but different substitution patterns at C-11, C-15, and C-17. To set the stage for structural modification by genetic engineering, we previously identified the gene cluster responsible for geldanamycin biosynthesis. We have now cloned and sequenced a 115-kb segment of the herbimycin biosynthetic gene cluster from S. hygroscopicus AM 3672, including the genes for the PKS and most of the post-PKS tailoring enzymes. The similarities and differences between the gene clusters and biosynthetic pathways for these closely related ansamycins are interpreted with support from the results of gene inactivation experiments. In addition, the organization and functions of genes involved in the biosynthesis of the 3-amino-5-hydroxybenzoic acid (AHBA) starter unit and the post-PKS modifications of progeldanamycin were assessed by inactivating the subclusters of AHBA biosynthetic genes and two oxygenase genes (gdmM and gdmL) that were proposed to be involved in formation of the geldanamycin benzoquinoid system. A resulting novel geldanamycin analog, KOS-1806, was isolated and characterized.  相似文献   

19.
O'Connor SE  Chen H  Walsh CT 《Biochemistry》2002,41(17):5685-5694
The biosynthesis of epothilones, a family of hybrid polyketide (PK)/nonribosomal peptide (NRP) antitumor agents, provides an ideal system to study a hybrid PK/NRP natural product with significant biomedical value. Here the third enzyme involved in epothilone production, the five domain 195 kDa polyketide synthase (PKS) EpoC protein, has been expressed and purified from Escherichia coli. EpoC was combined with the first two enzymes of the epothilone biosynthesis pathway, the acyl carrier protein (ACP) domain of EpoA and EpoB, to reconstitute the early steps in epothilone biosynthesis. The acyltransferase (AT) domain of EpoC transfers the methylmalonyl moiety from methylmalonyl-CoA to the holo HS-acyl carrier protein (ACP) in an autoacylation reaction. The ketosynthase (KS) domain of EpoC decarboxylates the methylmalonyl-S-EpoC acyl enzyme to generate the carbon nucleophile that reacts with methylthiazolylcarboxyl-S-EpoB. The resulting condensation product can be reduced in the presence of NADPH by the ketoreductase (KR) domain of EpoC and then dehydrated by the dehydratase (DH) domain to produce the methylthiazolylmethylacrylyl-S-EpoC acyl enzyme intermediate that serves as the acyl donor for subsequent elongation of the epothilone chain. The acetyl-CoA donor can be replaced with propionyl-CoA, isobutyryl-CoA, and benzoyl-CoA and the acyl chains accepted by both EpoB and EpoC subunits to produce ethyl-, isopropyl-, and phenylthiazolylmethylacrylyl-S-EpoC acyl enzyme intermediates, suggesting that future combinatorial biosynthetic variations in epothilone assembly may be feasible. These results demonstrate in vitro reconstitution of both the PKS/NRPS interface (EpoA-ACP/B) and the NRPS/PKS interface (EpoB/C) in the assembly line for this antitumor natural product.  相似文献   

20.
The biosynthetic gene cluster for the 26-membered ring of the polyene macrolide pimaricin extends for about 110 kilobase pairs of contiguous DNA in the genome of Streptomyces natalensis. Two sets of polyketide synthase (PKS) genes are separated by a group of small polyketide-functionalizing genes. Two of the polyketide synthase genes, pimS0 and pimS1, have been fully sequenced and disrupted proving the involvement of each of these genes in pimaricin biosynthesis. The pimS0 gene encodes a relatively small acetate-activating PKS (approximately 193 kDa) that appears to work as a loading protein which "presents" the starter unit to the second PKS subunit. The pimS1 gene encodes a giant multienzyme (approximately 710 kDa) harboring 15 activities responsible for the first four cycles of chain elongation in pimaricin biosynthesis, resulting in formation of the polyene chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号