首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
During the early stages of myogenesis in X. laevis, the primary myoblasts (of mesodermal origin) differentiate simultaneously, in each myotome, into mononucleate myotubes. At later stages mesenchymal cells appear in intermyotomal fissures and then in the myotomes between myotubes and contribute to the formation ofsyncytial muscle fibres. The pathway of mesenchymals cell during myogenesis was described in X laevis by monitoring the incorporation of 3H-thymidine. 3H-thymidine was incorporated in the nuclei of mesenchymal cells in intermyotomal fissures of younger myotomes and then in those of older myotomes between the myotubes revealing the proliferation of mesenchymal cells. As expected, nuclei of differentiating mononucleate myotubes did not incorporate 3H-thymidine. At later stages of myogenesis the myotubes were found to contain two classes of nuclei: large nuclei of the primary myoblasts (of myotomal origin) and smaller nuclei originating from secondary myoblasts ofmesenchymal origin. TEM and autoradiographic analyses confirm that mulinucleate myotubes in X. laevis arise through fusion of secondary myoblasts with mononucleate myotubes.  相似文献   

2.
Two stages can be distinguished in the differentiation of myotomal muscle fibres in Triturus vulgaris. In the first stage only synchronously differentiating myotomal cells are engaged; in the second stage mesenchymal cells also take part in the process. Myotomal cells (primary myoblasts) fuse to form 2-3 nucleate myotubes. Only in the caudal part of the embryo mononucleate myotubes persist. The mononucleate myotubes, like polynucleate ones, occupy the whole length of the myotome. The differentiation of myotubes is accompanied by vitellolysis. At further development stages mesenchymal cells enter the intermyotomal fissure, after which they migrate to the myotomes, between the myotubes. The cells that remain in the intermyotomal fissures retain their fibroblastic potential (they synthesise collagen). Their daughter cells adjoining the myotubes acquire myogenic abilities. Their myoblastic potential is evidenced by their ability to fuse with the myotube. Fusion of secondary myoblasts (of mesenchymal origin) with the myotube results in further growth of the myotubes. In T. vulgaris myotomal myotubes and muscle fibres developing from them are of myotomal-mesenchymal origin.  相似文献   

3.
Daczewska M  Saczko J 《Folia biologica》2003,51(3-4):151-157
During myotomal myogenesis in Hymenochirus boettgeri primary myoblasts differentiate into morphologically and functionally mature, mononucleate myotubes. Further muscle development in the studied species is due to fusion of mesenchymal cells with the latter, resulting in the presence of two classes of nuclei in the myotube: large of myotomal origin and small of mesenchymal origin. Densitometric measurements of DNA content revealed that the myotube nuclei at stages 35 reached values close to 4C DNA (3, 3C DNA), while at a later stage (42) the values were equal to 4C. Conversely, the secondary myoblast nuclei following the fusion with the myotube at stage 42 had 2C DNA--a content comparable to that found in erythrocyte nuclei. PCNA (Proliferating Cell Nuclear Antigen)--marker of S-phase of cell cycle, detected in the myotube nuclei (at stages 35, 42) appears during DNA replication.  相似文献   

4.
The Australian lungfish Neoceratodus forsteri (Dipnoi-Sarcoterygians) is a likely candidate for the extant sister group of Tetrapoda. Transmission electron and light microscopy analysis revealed that the arrangement of somite cells of the lungfish resembles the structure of the urodelan somite. On the other hand, the pattern of early muscle formation in N. forsteri is similar to that found in the Siberian sturgeon (Acipenser baeri). During the early stages of myogenesis of N. forsteri, somite-derived cells fuse to form multinucleated muscle lamellae. During later stages, mononucleated undifferentiated cells are first observed in the intermyotomal fissures and subsequently in the myotomes, among white muscle lamellae. The cells from the intermyotomal fissure differentiate into fibroblasts. The cells which have migrated into the myotomes, differentiate into mesenchyme-derived myoblasts. After hatching, white muscle lamellae are successively converted into polygonal muscle fibres. Conversion of lamellae into fibres may occur through splitting of muscle lamellae, or cylindrical muscle fibres may arise de novo as a result of fusion of mesenchyme-derived myoblasts. No increase in the number of muscle fibre nuclei is observed either in embryonic or juvenile musculature of N. forsteri. We suggest that until the 53 stage of embryonic development, the increase in muscle mass is accomplished mainly through hyperplasy. Thus, lungfish muscle represents the organizational intermediate between fishes and amphibians. This makes it a useful model to study the evolutionary implications of the mechanisms of muscle development.  相似文献   

5.
Compared to teleost fishes, a unique character of the myogenesis of the plesiomorphic A. baeri is the fusion of myoblasts derived from the somite, leading to the formation of multinucleate muscle lamellae. Then, the lamellae are converted into cylindrical muscle fibres. The mechanism of transformation of lamellae into fibres is still debatable. Early embryonic muscle growth is mainly due to the hypertrophy of somite-cell derived stock. After hatching, hypertrophic growth occurs parallel to hyperplastic growth. Proliferatively active mesenchymal cells, which migrate from the intermyotomal space into the myotomes, participate in both processes.  相似文献   

6.
Expression of XMyoD protein in early Xenopus laevis embryos.   总被引:4,自引:0,他引:4  
A monoclonal antibody specific for Xenopus MyoD (XMyoD) has been characterized and used to describe the pattern of expression of this myogenic factor in early frog development. The antibody recognizes an epitope close to the N terminus of the products of both XMyoD genes, but does not bind XMyf5 or XMRF4, the other two myogenic factors that have been described in Xenopus. It reacts in embryo extracts only with XMyoD, which is extensively phosphorylated in the embryo. The distribution of XMyoD protein, seen in sections and whole-mounts, and by immunoblotting, closely follows that of XMyoD mRNA. XMyoD protein accumulates in nuclei of the future somitic mesoderm from the middle of gastrulation. In neurulae and tailbud embryos it is expressed specifically in the myotomal cells of the somites. XMyoD is in the nucleus of apparently every cell in the myotomes. It accumulates first in the anterior somitic mesoderm, and its concentration then declines in anterior somites from the tailbud stage onwards.  相似文献   

7.
In early tailbud embryos of the axolotl (Ambystoma mexicanum), cells of the anterior myotomes begin to elongate and align along the longitudinal axis of the animal. Soon thereafter, gap junctions appear between the differentiating myotubes. These junctions occur between adjacent cells within a myotome (intramyotomal) and between the cells of adjacent myotomes which are separated from one another by narrow connective tissue septa (intermyotomal). The latter are found at the ends of the elongating cells where muscle-tendon insertion will occur and nerve-muscle synapses will form. The gap junctions are transient: They appear with the onset of myofibrillar formation at the time that nerve fibers enter the intermyotomal septa. The junctions last until the cells have differentiated into mature striated muscle cells and neuromuscular synapses are fully developed.These gap junctions may provide a means for the direct intercellular spread of electrical excitation between the differentiating muscle cells and so account for the observed myogenic contraction of myotomes. We also suggest that these junctions may form a means for cellular communication and interaction during the development of the axial musculature.  相似文献   

8.
Previous studies have demonstrated that embryonic skeletal muscle is competent to form hyaline cartilage when cultured in vitro on demineralized bone matrix (Nogami, H., and Urist, M. R. (1970). Exp. Cell Res.63, 404–410; Nathanson, M. A., et al. (1978). Develop. Biol.64, 99–117). The present experiments were undertaken to determine the nature of the morphological alterations which attend this phenotypic transformation and to investigate the ultrastructural characteristics of the myoblasts and fibroblasts of skeletal muscle during the transformation. Nineteen-day embryonic rat limb muscles were minced and the tissue fragments explanted to bone matrix or collagen gels. The trauma of excision and mincing causes syncytial myotubes to degenerate and the nuclei of mononucleate cells to enter a heterochromatic “resting stage.” In culture, nuclei of mononucleate cells rapidly regain euchromasia. No myoblast or fibroblast cell death can be detected. On bone matrix, the entire mononucleate population transforms into fibroblast-like cells. Myoblasts are the major contributor to this population; they dissociate from the degenerate myotubes and begin to acquire endoplasmic reticulum by 24 h in vitro. The fibroblast-like morphology persists through 4 days in vitro. By 6 days in vitro some of these fibroblast-like cells acquire the phenotypic characteristics of chondrocytes, and by 10 days masses of hyaline cartilage are found. In control explants of skeletal muscle onto collagen gels, the heterochromatic nuclei of the mononucleated cells expand after 24 hr in vitro, but the mononucleated cells remain as myoblasts and fibroblasts and begin to regenerate skeletal muscle by 4 days in vitro. No cartilage forms. The results indicate that both myoblasts and fibroblasts have chondrogenic potential when grown on demineralized bone. It is tempting to conclude that the embryonic mesenchymal cells which give rise to skeletal muscle, cartilage, and other connective tissue of the limb have similar developmental potentials and that local influences, rather than separate cell lineages, account for the final pattern of differentiation.  相似文献   

9.
Agnathan lampreys retain ancestral characteristics of vertebrates in the morphology of skeletal muscles derived from two mesodermal regions: trunk myotomes and unsegmented head mesoderm. During lamprey development, some populations of myoblasts migrate via pathways that differ from those of gnathostomes. To investigate the evolution of skeletal muscle differentiation in vertebrates, we characterize multiple contractile protein genes expressed in the muscle cells of the Japanese lamprey, Lethenteron japonicum. Lamprey actin gene LjMA2, and myosin heavy chain (MyHC) genes LjMyHC1 and LjMyHC2 are all expressed in the developing skeletal muscle cells of early embryos. However, LjMyHC1 and LjMyHC2 are expressed only in cells originating from myotomes, while LjMA2 is expressed in both myotomal and head musculature. Thus, in lampreys, myotomes and head mesoderm differ in the use of genes encoding contractile protein isoforms. Phylogenetic tree analyses including lamprey MyHCs suggest that the variety of muscle MyHC isoforms in different skeletal muscles may correspond to the morphological complexity of skeletal muscles of different vertebrate species. Another lamprey actin gene LjMA1 is likely to be the first smooth muscle actin gene isolated from non-tetrapods. We conclude that, in vertebrate evolution, the different regulatory systems for striated and smooth muscle-specific genes may have been established before the agnathan/gnathostome divergence.  相似文献   

10.
The remarkable regenerative ability of adult urodele amphibians depends in part of the plasticity of differentiated cells at the site of injury. Limb regeneration proceeds by formation of a mesenchymal growth zone or blastema under the wound epidermis at the end of the stump. Previous work has shown that when cultured post-mitotic newt myotubes are introduced into the blastema, they re-enter the cell cycle and undergo conversion to mononucleate cells which divide and contribute to the regenerate [11, 13]. In order to investigate the interdependence of these two aspects of plasticity, we have blocked cell cycle progression of the myotubes either by X-irradiation or by transfection of the CDK4/6 inhibitor p16. In each case, the efficacy of the block was evaluated in culture after activation of S phase re-entry by serum stimulation. The experimental myotubes were implanted into limb blastemas along with a differentially labelled control population of myotubes containing an equivalent number of nuclei. X-irradiated myotubes gave rise to mononucleate cells in the limb blastema, and the progeny were blocked in respect of S phase entry. Comparable results were obtained with the p16-expressing myotubes. We conclude that progression through S or M phase is not required for generation of mononucleate cells and suggest that such cells may arise by budding from the muscle syncytium.  相似文献   

11.
Fusion of mononucleate myoblasts to form multinucleated myotubes increases when skeletal muscle cells are grown in progressively higher oxygen concentrations (5%, 20%, and 40% oxygen). At four days of growth fusion of myoblasts (as expressed by the percent of all muscle nuclei that are located in myotubes) is 57 ± 2% in 5% oxygen, 68 ± 1% in 20% oxygen, and 78 ± 2% in 40% oxygen (P<0.001). However, at a concentration of 40%, oxygen depresses the rate of cell division and thereby affects the number of myoblasts available for fusion. Thus, oxygen concentration significantly modifies growth of skeletal muscle in vitro. Its net effect on myotube formation results from the interaction of its separate effects to enhance cell fusion and to depress cell proliferation.  相似文献   

12.
The expression of the retinoblastoma (RB) protein has been studied during in vitro muscle differentiation by immunofluorescence staining with three different antibodies against RB protein. Proliferating mononucleate L6 rat myoblasts showed a low level of expression. As cells began to enter a nonreplicating G0 state, the cell population became heterogeneous. Some nonreplicating cells showed a high level of expression. Nuclei at the two ends of myotubes were strongly positive, whereas centrally located nuclei showed low RB expression. Overexpression of the human RB protein in rat L6 myotubes from a Semliki forest virus (SFV)-based, transient expression vector produced a similar picture. Terminally located nuclei expressed human RB at a much higher level than did the centrally located nuclei. The results suggest that individual nuclei with a multinucleated syncytium may undergo position-dependent specialization. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Proliferation and fusion of myoblasts are needed for the generation and repair of multinucleated skeletal muscle fibers in vivo. Studies of myocyte differentiation, cell fusion, and muscle repair are limited by an appropriate in vitro muscle cell culture system. We developed a novel cell culture technique [two-dimensional muscle syncytia (2DMS) technique] that results in formation of myotubes, organized in parallel much like the arrangement in muscle tissue. This technique is based on UV lithography–produced micro-patterned glass on which conventionally cultured C2C12 myoblasts proliferate, align, and fuse to neatly arranged contractile myotubes in parallel arrays. Combining this technique with fluorescent microscopy, we observed alignment of actin filament bundles and a perinuclear distribution of glucose transporter 4 after myotube formation. Newly formed myotubes contained adjacently located MyoD-positive and MyoD-negative nuclei, suggesting fusion of MyoD-positive and MyoD-negative cells. In comparison, the closely related myogenic factor Myf5 did not exhibit this pattern of distribution. Furthermore, cytoplasmic patches of MyoD colocalized with bundles of filamentous actin near myotube nuclei. At later stages of differentiation, all nuclei in the myotubes were MyoD negative. The 2DMS system is thus a useful tool for studies on muscle alignment, differentiation, fusion, and subcellular protein localization. (J Histochem Cytochem 56:881–892, 2008)  相似文献   

14.
Isolated chicken myoblasts had previously been utilized in many studies aiming at understanding the emergence and regulation of the adult myogenic precursors (satellite cells). However, in recent years only a small number of chicken satellite cell studies have been published compared to the increasing number of studies with rodent satellite cells. In large part this is due to the lack of markers for tracing avian myogenic cells before they become terminally differentiated and express muscle-specific structural proteins. We previously demonstrated that myoblasts isolated from fetal and adult chicken muscle display distinct schedules of myosin heavy-chain isoform expression in culture. We further showed that myoblasts isolated from newly hatched and young chickens already possess the adult myoblast phenotype. In this article, we report on the use of polyclonal antibodies against the chicken myogenic regulatory factor proteins MyoD and myogenin for monitoring fetal and adult chicken myoblasts as they progress from proliferation to differentiation in culture. Fetal-type myoblasts were isolated from 11-day-old embryos and adult-type myoblasts were isolated from 3-week-old chickens. We conclude that fetal myoblasts express both MyoD and myogenin within the first day in culture and rapidly transit into the differentiated myosin-expressing state. In contrast, adult myoblasts are essentially negative for MyoD and myogenin by culture Day 1 and subsequently express first MyoD and then myogenin before expressing sarcomeric myosin. The delayed MyoD-to-myogenin transition in adult myoblasts is accompanied by a lag in the fusion into myotubes, compared to fetal myoblasts. We also report on the use of a commercial antibody against the myocyte enhancer factor 2A (MEF2A) to detect terminally differentiated chicken myoblasts by their MEF2+ nuclei. Collectively, the results support the hypothesis that fetal and adult myoblasts represent different phenotypic populations. The fetal myoblasts may already be destined for terminal differentiation at the time of their isolation, and the adult myoblasts may represent progenitors that reside in an earlier compartment of the myogenic lineage.  相似文献   

15.
Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD   总被引:191,自引:0,他引:191  
W E Wright  D A Sassoon  V K Lin 《Cell》1989,56(4):607-617
  相似文献   

16.
We described the ex vivo production of mature and functional human smooth muscle cells (SMCs) derived from skeletal myoblasts. Initially, myoblasts expressed all myogenic cell-related markers such as Myf5, MyoD and Myogenin and differentiate into myotubes. After culture in a medium containing vascular endothelial growth factor (VEGF), these cells were shown to have adopted a differentiated SMC identity as demonstrated by alphaSMA, SM22alpha, calponin and smooth muscle-myosin heavy chain expression. Moreover, the cells cultured in the presence of VEGF did not express MyoD anymore and were unable to fuse in multinucleated myotubes. We demonstrated that myoblasts-derived SMCs (MDSMCs) interacted with endothelial cells to form, in vitro, a capillary-like network in three-dimensional collagen culture and, in vivo, a functional vascular structure in a Matrigel implant in nonobese diabetic-severe combined immunodeficient mice. Based on the easily available tissue source and their differentiation into functional SMCs, these data argue that skeletal myoblasts might represent an important tool for SMCs-based cell therapy.  相似文献   

17.
The chemokine-like receptor-1 (CMKLR1) is a G protein-coupled receptor that is activated by chemerin, a secreted plasma leukocyte attractant and adipokine. Previous studies identified that CMKLR1 is expressed in skeletal muscle in a stage-specific fashion during embryogenesis and in adult mice; however, its function in skeletal muscle remains unclear. Based on the established function of CMKLR1 in cell migration and differentiation, we investigated the hypothesis that CMKLR1 regulates the differentiation of myoblasts into myotubes. In C(2)C(12) mouse myoblasts, CMKLR1 expression increased threefold with differentiation into multinucleated myotubes. Decreasing CMKLR1 expression by adenoviral-delivered small-hairpin RNA (shRNA) impaired the differentiation of C(2)C(12) myoblasts into mature myotubes and reduced the mRNA expression of myogenic regulatory factors myogenin and MyoD while increasing Myf5 and Mrf4. At embryonic day 12.5 (E12.5), CMKLR1 knockout (CMKLR1(-/-)) mice appeared developmentally delayed and displayed significantly lower wet weights and a considerably diminished myotomal component of somites as revealed by immunolocalization of myosin heavy chain protein compared with wild-type (CMKLR1(+/+)) mouse embryos. These changes were associated with increased Myf5 and decreased MyoD protein expression in the somites of E12.5 CMKLR1(-/-) mouse embryos. Adult male CMKLR1(-/-) mice had significantly reduced bone-free lean mass and weighed less than the CMKLR1(+/+) mice. We conclude that CMKLR1 is essential for myogenic differentiation of C(2)C(12) cells in vitro, and the CMKLR1 null mice have a subtle skeletal muscle deficit beginning from embryonic life that persists during postnatal life.  相似文献   

18.
19.
The limb and axial skeletal muscles of mammals originate from somitic dermomyotome, which during early development separates to form two discrete structures, the dermatome and the myotome. The latter cell mass gives rise to the muscle-forming lineage while cells of the dermatome will form the skin dermal fibroblast population of the dorsal regions of the body. It has been generally accepted for some time that myotome-derived myoblasts were the sole source of muscle fibre nuclei, but evidence has recently been presented from several laboratories that fibroblasts can fuse with myoblasts to contribute active nuclei to the resulting myotubes. We report here an investigation into the myogenic capacity of fibroblasts. Confluent monocultures of mouse dermal fibroblasts, muscle fibroblasts, and C2C12 myoblasts each retain their individual phenotype when maintained for periods up to 7 days in culture. We also grew isolated colonies of fibroblasts and myoblasts in an arrangement which allowed free exchange of tissue culture medium between the 2 cell types. We found evidence of the conversion of dermal fibroblasts to a myogenic lineage as measured by the appearance of MyoD-positive cells expressing the muscle-specific intermediate filament desmin. In addition, dermal fibroblast cultures contained multinucleate syncytia positive for MyoD and containing sarcomeric myosin heavy chain. In contrast, muscle-derived fibroblasts showed no evidence of myogenic conversion when maintained in identical culture conditions. We prepared conditioned medium from confluent cultures of C2C12 myoblasts and added this material to confluent monocultures of either dermal or muscle fibroblasts. While muscle fibroblasts showed no phenotypic alterations, cultures of dermal fibroblasts responded to myoblast conditioned medium by converting to a myogenic lineage as judged by expression of MyoD and desmin. We conclude that a proportion of dermal fibroblasts retain a myogenic capacity into stages well beyond their early association with myoblasts in the dermomyotome. © 1996 Wiley-Liss, Inc.  相似文献   

20.
We show that Bcl-2 expression in skeletal muscle cells identifies an early stage of the myogenic pathway, inhibits apoptosis, and promotes clonal expansion. Bcl-2 expression was limited to a small proportion of the mononucleate cells in muscle cell cultures, ranging from ∼1–4% of neonatal and adult mouse muscle cells to ∼5–15% of the cells from the C2C12 muscle cell line. In rapidly growing cultures, some of the Bcl-2–positive cells coexpressed markers of early stages of myogenesis, including desmin, MyoD, and Myf-5. In contrast, Bcl-2 was not expressed in multinucleate myotubes or in those mononucleate myoblasts that expressed markers of middle or late stages of myogenesis, such as myogenin, muscle regulatory factor 4 (MRF4), and myosin. The small subset of Bcl-2–positive C2C12 cells appeared to resist staurosporine-induced apoptosis. Furthermore, though myogenic cells from genetically Bcl-2–null mice formed myotubes normally, the muscle colonies produced by cloned Bcl-2–null cells contained only about half as many cells as the colonies produced by cells from wild-type mice. This result suggests that, during clonal expansion from a muscle progenitor cell, the number of progeny obtained is greater when Bcl-2 is expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号