首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ay I  Tuncer M 《Life sciences》2006,79(9):877-882
We investigated the nature and signaling pathways of endothelium- and sensory-nerve ending-derived substances involved in acetylcholine-induced vasodilation in rat isolated perfused kidney. Endothelial denudation by Triton X-100 (0.2%, 0.1 ml) or depletion of afferent nerve endings by capsaicin (10(-6) mol/l) attenuated acetylcholine-induced vasodilation. When these two agents were administered together, the response to acetylcholine was completely inhibited. CGRP1 receptor blocker CGRP 8-37 (10(-7) mol/l) and adenosine A(2) receptor antagonist ZM 241 385 (10(-7) mol/l) inhibited acetylcholine-induced dilation. When indomethacin (10(-5) mol/l), a cyclooxygenase inhibitor, l-NOARG (10(-4) mol/l), a nitric oxide (NO) synthase inhibitor, and potassium chloride (30 mmol/l), to test EDHF response, were perfused simultaneously, the inhibition was greater than that was observed with each agent alone. Guanylate cyclase inhibitor ODQ (10(-5) mol/l) or protein kinase A inhibitor KT 5720 (5x10(-7) mol/l) inhibited acetylcholine-induced dilation. Gap junction uncoupler 18alpha-glycyrrhetinic acid (10(-4) mol/l) caused an uncontrollable increase in basal perfusion pressure making it impossible to test against acetylcholine-induced dilation. Our data suggest that NO, prostanoids, EDHF, and CGRP released from vascular endothelium and afferent nerve endings participate in acetylcholine-induced vasodilation and their signal transduction molecules include protein kinase A and guanylate cyclase.  相似文献   

2.
The effect of glycogen content on the activation of glycogen phosphorylase during adrenaline stimulation was investigated in soleus muscles from Wistar rats. Furthermore, adrenergic activation of glycogen phosphorylase in the slow-twitch oxidative soleus muscle was compared to the fast-twitch glycolytic epitrochlearis muscle. The glycogen content was 96.4 +/- 4.4 mmol (kg dw)(-1) in soleus muscles. Three hours of incubation with 10 mU/ml of insulin (and 5.5 mM glucose) increased the glycogen content to 182.2+/-5.9 mmol (kg dw)(-1) which is similar to that of epitrochlearis muscles (175.7+/-6.9 mmol (kg dw)(-1)). Total phosphorylase activity in soleus was independent of glycogen content. Adrenaline (10(-6) M) transformed about 20% and 35% (P < 0.01) of glycogen phosphorylase to the a form in soleus with normal and high glycogen content, respectively. In epitrochlearis, adrenaline stimulation transformed about 80% of glycogen phosphorylase to the a form. Glycogen synthase activation was reduced to low level in soleus muscles with both normal and high glycogen content. In conclusion, adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscles with increased glycogen content. Glycogen phosphorylase activation during adrenaline stimulation was much higher in epitrochlearis than in soleus muscles with a similar content of glycogen.  相似文献   

3.
Fasting or starvation of 1(st)- and 2(nd)-day fifth instar Manduca sexta larvae leads to rapid activation of fat body glycogen phosphorylase. Under feeding conditions, 21-29% of the phosphorylase was found in the active form. However, after only one hour of starvation, the active form increased to 55-65%. In larvae on the 3(rd)-day there was a slower increase in the activation, requiring three hours of starvation to reach a maximum of 60-65%. No activation was observed in 4(th)-day larvae after three hours of starvation. When 1(st)- or 2(nd)-day larvae were decapitated, the time-course of activation of glycogen phosphorylase was very similar to that observed in intact insects. However, activation of glycogen phosphorylase following decapitation was only observed in 1(st)- and 2(nd)-day larvae. In 2(nd)-day larvae, octopamine promoted activation of glycogen phosphorylase and 100-pmol of octopamine promoted maximum activation. Higher amounts of injected octopamine caused a decrease in activation. The injection of 100 pmol of octopamine caused a 50-55% activation of phosphorylase within 30 minutes. The simultaneous injection of the alpha-adrenergic receptor antagonist phentolamine with octopamine blocked the octopamine effect in 1(st)- and 2(nd)-day feeding larvae. However, the activation of glycogen phosphorylase observed in ligated/decapitated larvae on the 1(st)- and 2(nd)-day was not abolished by injection of phentolamine. All of these data suggest that factors other than adipokinetic hormone and octopamine may be involved in the activation of glycogen phosphorylase during fasting or starvation in the early part of the fifth larval stage of M. sexta.  相似文献   

4.
The effect of some pesticides on the rhythmic and tonic activity of adductor muscle of fresh-water mussel (Anodonta cygnea) larvae was investigated in short-term experiments. In the examined concentration range, Dimecron-50 does not influence the rhythmic activity of adductor muscles, while high concentrations of Gramoxone (is greater than 1 ml/l), Thimet-10 G (is greater than 5 x 10(-1) g/l) and Hungaria L-7 (is greater than 10(-1) g/l) cause a slight increase in it. These substances also induce a prolonged tonic contraction of a small proportion (10%) of larvae. Hungaria L-7 makes an exception, causing considerable contracture (30%). The concentrations inhibiting the TA activation by 50% are: 6x 10(-1) ml/l Dimecron-50; 2.5 x 10(-1) ml/l Gramoxone; 10(-1) g/l Hungaria L-7 and 8x 10(-2) g/l Thimet-10 G, while the 50% inhibition of the nonspecific ACh activation is resulted by 2 x 10(-1) ml/l D-50. It is concluded that contamination of environmental waters with Dimecron-50, Thimet-10 G or Hungaria L-7 may be injurious also for Pelecypoda larvae, that may contribute to the unbalancing of the water ecosystem.  相似文献   

5.
At maximally effective concentrations, vasopressin (10(-7) M) increased myo-inositol trisphosphate (IP3) in isolated rat hepatocytes by 100% at 3 s and 150% at 6 s, while adrenaline (epinephrine) (10(-5) M) produced a 17% increase at 3 s and a 30% increase at 6 s. These increases were maintained for at least 10 min. Both agents increased cytosolic free Ca2+ [( Ca2+]i) maximally by 5 s. Increases in IP3 were also observed with angiotensin II and ATP, but not with glucagon or platelet-activating factor. The dose-responses of vasopressin and adrenaline on phosphorylase and [Ca2+]i showed a close correspondence, whereas IP3 accumulation was 20-30-fold less sensitive. However, significant (20%) increases in IP3 could be observed with 10(-9) M-vasopressin and 10(-7) M-adrenaline, which induce near-maximal phosphorylase activation. Vasopressin-induced accumulation of IP3 was potentiated by 10mM-Li+, after a lag of approx. 1 min. However the rise in [Ca2+]i and phosphorylase activation were not potentiated at any time examined. Similar data were obtained with adrenaline as agonist. Lowering the extracellular Ca2+ to 30 microM or 250 microM did not affect the initial rise in [Ca2+]i with vasopressin but resulted in a rapid decline in [Ca2+]i. Brief chelation of extracellular Ca2+ for times up to 4 min also did not impair the rate or magnitude of the increase in [Ca2+]i or phosphorylase a induced by vasopressin. The following conclusions are drawn from these studies. IP3 is increased in rat hepatocytes by vasopressin, adrenaline, angiotensin II and ATP. The temporal relationships of its accumulation to the increases in [Ca2+]i and phosphorylase a are consistent with it playing a second message role. Influx of extracellular Ca2+ is not required for the initial rise in [Ca2+]i induced by these agonists, but is required for the maintenance of the elevated [Ca2+]i.  相似文献   

6.
Hormonal regulation of hepatic glycogen synthase phosphatase   总被引:1,自引:0,他引:1  
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a.  相似文献   

7.
The effects of autonomic-nerve stimulation on the activities of phosphorylase (EC 2.4.1.1), dephospho-phosphorylase kinase (EC 2.7.1.38) and phosphorylase phosphatase (EC 3.1.3.17), and on the concentration of adenosine 3', 5'-monophosphate in rabbit liver were investiaged. Results were compared with the effects of epinephrine and glucagon on these enzymes. 1. The acitivity of liver phosphorylase increased rapidly and markedly on electrical stimulation of the splanchnic nerve, or after intraportal administration of epinephrine or glucagon. The activity was not affected by vagal stimulation. 2. The activity of dephospho-phosphorylase kinase increased about 2--3-fold 1 min after injections of epinephrine and glucagon, glucagon causing more activation than epinephrine. The enzyme activity was not altered by splanchnic-nerve, or vagal stimulation. 3. Injections of epinephrine and glucagon caused marked elevation of liver adenosine 3', 5'-monophosphate within a few minutes. With epinephrine, the nucleotide concentration rose to a maximum after 1 min and amounted to about 3-fold increase, while with glucagon the maximum increase of approximately 8-fold increase was observed after 2 min. Stimulation of the splanchnic nerve for 10 min did not affect the adenosine 3', 5'-monophosphate level in the liver. Vagal stimulation also had no effect on the level. 4. The activity of phosphorylase phosphatase decreased promptly (within 30 s) and markedly on splanchnic-nerve stimulation, but did not change significantly on administration of epinephrine of glucagon. A small but insignificant increase in phosphatase activity wasobserved upon vagal stimulation. 5. The effect of Ca-2+ on purified dephospho-phosphorylase kinase was studied. The activity was found to depend partially on free Ca-2+ at low Ca-2+ concentrations (1-10-minus 7--1-10-minus 5 M). 6. These results suggest that the rise in hepatic phosphorylase content upon splanchnic-nerve stimulation, unlike that induced by epinephrine and glucagon, is not mediated by adenosine 3', 5'-monophosphate and subsequent activation of dephospho-phosphorylase kinase, but rather by inactivation of phosphorylase phosphatase. The possible existence of a new factor in this mechanism is discussed.  相似文献   

8.
Incubation of fat cells with insulin increased glycogen synthase I activity without changing total synthase activity. This effect of insulin was dependent upon the particular lot of albumin present in the medium and was abolished by incubating cells with trypsin. Half-maximal activation of glycogen synthase was obtained with 8 microunits/ml of insulin, a concentration very similar to that which half-maximally stimulated 3-O-methylglucose uptake. The basal percentage of phosphorylase a activity was not detectably altered by insulin, although it was decreased by incubating cells with 5 mM glucose. Insulin (50 microunits/ml) markedly opposed actions of epinephrine (0.05 to 10 muM) to increase phosphorylase a activity and decrease glycogen synthase I activity, effects which were observed without glucose. Partial activation of glycogen synthase by insulin was seen after 1 min and complete activation after 4 min. Glucose alone produced a transient increase in synthase I activity. When cells were incubated with insulin plus glucose for 4 min, the increase in the percent synthase I activity was much greater than the additive effects of insulin and glucose alone. This potentiation of the effect of insulin on glucogen synthase I activity depended on the time of incubation with glucose and on the concentration of the hexose. If cells were incubated with cytochalasin B before insulin plus glucose, the effect of glucose was abolished. These results suggest that there are at least two mechanisms by which insulin can increase fat cell glycogen synthase I activity. One requires glucose and activation occurs secondary to an increase in glucose transport; where another mechanism(s) is operative even in the absence of glucose.  相似文献   

9.
Fasting of second-day fifth instar larval Manduca sexta leads to a rapid decrease in hemolymph glucose concentration from 3.39+/-0.29 to 0.33+/-0.06 mM in 1 h, along with a decrease in the fructose-2,6-bisphosphate content in the fat body (from 5.92+/-0.31 to 2.80+/-0.47 nmol fructose-2,6-bisphosphate/g fat body in 3 h) and activation of fat body glycogen phosphorylase (from 16% to 55-65% phosphorylase a). During re-feeding an increase in the glucose level in the hemolymph was observed (from 0.36+/-0.05 to 3.91+/-0.36 mM in 3 h), along with an increase in the fructose-2,6-bisphosphate level in the fat body (from 2.88+/-0.47 to 6.66+/-0.42 nmol fructose-2,6-bisphosphate/g fat body in 3 h) and inactivation of fat body glycogen phosphorylase (from 56% to 16% phosphorylase a). These data are consistent with the hypothesis that a decrease in hemolymph glucose both activates fat body glycogen phosphorylase and causes a decrease in fat body fructose-2,6-bisphosphate content. Both of these changes would favor conversion of stored glucose to trehalose in the fat body. When second-day larvae were decapitated, the changes in hemolymph glucose and fat body fructose-2,6-bisphosphate were very similar to those observed in fasting whole insects. These data are consistent with a direct role for glucose in controlling carbohydrate metabolism in Manduca sexta.  相似文献   

10.
A study on the influences of adrenaline upon the metabolism of glycogen in fish retina is presented. The glycogen in the retina of the fish Eugerres plumieri amounted to approximately 7·5 mg glucose/10 g tissue wet weight of which 5·8+0±81 S.D. was present in the lyo-form and 1·7+0·41 S.D. in the desmo-form. The phosphorylase A activity in this tissue was found to be 36·5 μg P/g tissue wet weight/min, which represents 68 % of the total phosphorlyase activity. A definite effect of administered adrenaline upon the retinal glycogen could be observed only when conditions facilitating the penetration of this substance into the retina were given. A dose of 100 μg/kg body weight of adrenaline injected to the animals previously pretreated with 10 mg/kg of isocarboxazid and 20 ml of 20% v/v aqueous solution of ethanol showed a significant increase in phosphorylase activity and a close to 50% drop in the retinal lyo-glycogen. The highest penetration of adrenaline into the retina was observed 20 to 40 min after the injection of adrenaline into a fish pretreated with isocarboxazid 4 h and ethanol 20 min prior to the administration of the amine. Under these conditions the glycemia went up from 70mg% to 90mg% and the MAO-activity dropped from a value of 85 ug 4 HOQ/g tissue wet weight/30 min to zero.  相似文献   

11.
Phosphorylase kinase from human polymorphonuclear leukocytes was investigated in a gel filtered crude preparation (17,000 x g supernatant). It was found to exist in two forms, one (the phosphorylated form) more active than the other (the dephosphorylated form). Interconversion between the two forms was carried out by a cyclic AMP dependent protein kinase and phosphoprotein phosphatase, respectively. The ratio of activity measured at pH 8.0 and 6.0 was 0.36 for the non-activated and 0.83 for the activated form, which is in contrast to the behaviour of phosphorylase kinase from muscle. Km app for the substrate phosphorylase b was 650 U/ml and 85 U/ml for the non-activated and activated form, respectively, whereas Km app for ATP was 0.03 mM and identical for the two forms. The non-activated form of phosphorylase kinase was activated by Ca2+ in the range 10(-7)--5 . 10(-6) M, which may have physiological importance, whereas the activated form was insensitive to variations in Ca2+ concentration between 10(-9) and 10(-3) M.  相似文献   

12.
本文通过在稳定表达趋化因子受体的细胞系CHO/CXCR1、CHO/CXCR2、CHO/CXCR3、CHO/CXCR4和CHO/CCR5上进行[35S]GTPγS结合实验,研究了Saponin 对不同趋化因子受体活化的影响。实验结果表明:① 对于CHO/CXCR1和CHO/CXCR4, 在反应体系中添加10 μg/ml Saponin能提高受体G蛋白与[35S]GTPγS的特异性结合,使刺激比率(CPMAgonist/CPMBasal)分别从125%和184%扩大到481%和415%;② 对于CHO/CCR5,10 μg/ml Saponin对受体G蛋白与[35S]GTPγS的特异性结合无影响,刺激比率大小未变;③ 对于CHO/CXCR2和CHO/CXCR3,10 μg/ml Saponin降低了受体G蛋白与[35S]GTPγS的特异性结合,使刺激比率分别从171%和168%减小到130%和114%。实验结果表明Saponin是与受体发生作用,对于不同的趋化因子受体,Saponin对受体的活化的影响不同。  相似文献   

13.
When crude rat liver preparations were incubated at 30degrees C, a gradual loss of phosphorylase kinase (ATP:phosphorylase b phosphotransferase, EC 2.7.1.38) activity was observed. This inactivation was Mg2+ dependent and was partially inhibited by sodium fluoride. Addition of Mg2+ ATP to the liver preparations, at any time throughout the incubation, caused a reactivation of the phosphorylase kinase and this was accelerated by micromolar concentrations of cyclic AMP. The reactivation process could be completely abolished by the addition of a heat stable protein kinase inhibitor, implicating cyclic AMP dependent protein kinase in the activation reaction. Both the low and the high activity forms of the enzyme required micromolar quantities of Ca2+ for full activity (KA = 0.6 micronM). The two forms exhibit quite different pH dependencies and at the physiological pH of liver (pH 7.4) their activities differed by a factor of 5-10. Conversion of the lower activity form into the higher seems to affect only the V - Km for muscle phosphorylase b (EC 2.4.1.1) was about 1 mg/ml for both enzyme forms.  相似文献   

14.
The dephosphorylation of phosphorylase a by the catalytic subunit of protein phosphatase-1 obtained from rabbit skeletal muscle is inhibited by heparin in a noncompetitive manner with respect to phosphorylase a (Ki = 8 micrograms/ml). The inhibitory effect of heparin is also observed in the presence of effectors (e.g., glucose and AMP) modifying the dephosphorylation of phosphorylase a. Heat-stable protein inhibitors of protein phosphatase-1 can develop their inhibitory effect of the activity of protein phosphatase-1 even in the presence of heparin. The inhibitory effect of heparin and the heat-stable inhibitor-2 of phosphatase is additive. Polybrene, a heparin antagonist, prevented phosphatase-1 from the inhibition caused by heparin or the inhibitors. Proteins with basic character, histone fractions (H1, H3) and protamine sulfate, can counteract with the inhibitory effect of heparin, but they cannot intercept the actions of inhibitor-1 or -2.  相似文献   

15.
Liver phosphorylase a activity in intact animals is mostly determined during anesthesia. The aim of this study was to investigate the effect of administering pentobarbital by different routes on activity of liver phosphorylase a. Rats had chronically implanted venous catheters and received pentobarbital (5 mg/100 g body wt) either intraperitoneally, as a slow intravenous infusion, or as an intravenous or intracardial bolus. Times from administration of barbiturate to sampling of the liver were 10 min, 10 min, 85 +/- 32 s (mean +/- SE), and 53 +/- 10 s, respectively. Phosphorylase a activity in % of total phosphorylase activity was 40 +/- 2, 56 +/- 4, 82 +/- 3, and 92 +/- 2, respectively, all significantly different. Thus the route of administration of pentobarbital affects the phosphorylase a activity and should be considered when evaluating this activity. This fact can only be partially explained by differences in duration before the drug takes effect. It is proposed that intraperitoneal injection of pentobarbital may anesthetize hepatic sympathetic nerves or have a direct inhibiting effect on phosphorylase a activity.  相似文献   

16.
Fructose effect to suppress hepatic glycogen degradation   总被引:2,自引:0,他引:2  
The effect of fructose on glycogen degradation was examined by measuring the flux of 14C from prelabeled glycogen in perfused rat livers. During 2-h refeeding of 24-h-fasted rats, newly synthesized hepatic glycogen was labeled by intraperitoneal injection of [U-14C] galactose (0.1 mg and 0.02 microCi/g of body weight). The livers of refed rats were then perfused in a nonrecirculating fashion for an initial 30 min with glucose alone (10 mM) for the following 60 min with glucose (10 mM) without (n = 5) or with fructose (1, 2, or 10 mM; n = 5 for each). When livers were exposed to fructose, release of label into the perfusate immediately declined and remained markedly suppressed through the end of perfusion (p less than 0.05). The suppression was dose-dependent; at steady state (50-70 min), label release was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose, respectively (p less than 0.0001). Suppression was not accompanied by significant changes in the activities of glycogen synthase or phosphorylase assessed in vitro. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (Fru-1-P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.60 mumol/g of liver with 1, 2, and 10 mM fructose, respectively; p less than 0.0001). Maximum inhibition of label release was 82%; the Fru-1-P concentration for half inhibition was 0.57 mumol/g of liver, well within the concentration of Fru-1-P attained during refeeding. We conclude that fructose enhances net glycogen accumulation in liver by suppressing glycogenolysis and that the suppression is presumably caused by allosteric inhibition of phosphorylase by Fru-1-P.  相似文献   

17.
1. Slowly hydrolysable analogues of GTP were introduced into hepatocytes by incubating the cells in the absence of Mg2+ and in the presence of ATP4-. Experiments using guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S])indicated that about 50% of the GTP[S] loaded into the cells was subsequently hydrolysed. 2. In cells loaded with GTP[S] and incubated in the absence of added extracellular Ca2+ (Ca2+o), the rate of activation of glycogen phosphorylase observed after addition of 1.3 mM-Ca2+o was 250% greater than the rate observed in unloaded cells. Smaller effects (130%) were observed in cells loaded with either guanyl-5'-yl imidodiphosphate or guanosine 5-[beta-thio]diphosphate (GDP[S]). Cells loaded with adenosine 5'-[gamma-thio]triphosphate showed no increase in glycogen phosphorylase activity on addition of Ca2+o. 3. The effect of a submaximal concentration of GTP[S] on the Ca2+-induced activation of glycogen phosphorylase was additive with that of a half-maximally effective concentration of vasopressin. GTP[S] did not increase the effect of a maximally effective concentration of the hormone. 4. Cells loaded with GTP[S] exhibited an increased initial rate of 45Ca2+ exchange measured at 1.3 mM-Ca2+o. 5. GTP[S] did not affect the amount of 45Ca2+ exchanged by cells incubated at 0.1 mM-Ca2+o or the ability of vasopressin to release 45Ca2+ from these cells. 6. It is concluded that the introduction of slowly hydrolysable analogues of GTP to the liver cell cytoplasmic space stimulates the inflow of Ca2+ across the plasma membrane through a channel similar to that activated by vasopressin.  相似文献   

18.
Protein phosphatases of the guinea-pig parotid gland   总被引:2,自引:0,他引:2  
The nature of protein phosphatases of the guinea-pig parotid gland was investigated. The protein phosphatases were characterized by (a) the use of five different 32P-labelled substrate proteins (phosphorylase a, histone H2B, casein, and the alpha and beta subunits of phosphorylase kinase), (b) their behaviour during ion-exchange chromatography, (c) their relative molecular mass distribution during gel filtration, (d) their sensitivity towards inhibition by inhibitor 2, (e) their ability to be stimulated by protamine and (f) by their behaviour during freezing and thawing in the presence of 2-mercaptoethanol. The following results were obtained. 1. The 'cytosol' (100,000 X g supernatant) contains protein phosphatases of the types 1, 2A and 2B. 2. On the basis of inhibition with inhibitor 2 (1.2 micrograms/ml) the 'cytosolic' phosphorylase phosphatase activity consists to about 40% of protein phosphatase 1 and to about 60% of protein phosphatase 2A. 3. In the cytosol about 80-90% of the protein phosphatases 1 and 2A exist in an inactive state. 4. A 5-10-fold activation can be achieved by ethanol precipitation, which results in the generation of a mixture of forms of low apparent molecular mass of about 30 kDa. 5. Microsome-associated phosphorylase phosphatase activities can be extracted in a highly active state by detergent (1% Triton X-100) or by 0.8 M NaCl. 6. Activity measurements in the presence of inhibitor 2 (1.2 micrograms/ml) indicate that the microsomal activities consist to about 75% of protein phosphatase 1 and to about 25% of protein phosphatase 2A. Activities corresponding to protein phosphatases 2B and 2C could not be detected. 7. The 'microsomal' protein phosphatase activities exhibit lower apparent molecular masses (70 kDa and 30 kDa) than the 'cytosolic' protein phosphatases (about 260 kDa). 8. After ethanol treatment of the microsomal protein phosphatases only activities with apparent molecular masses of about 30 kDa can be detected. These share several similarities with the ethanol-treated cytosolic protein phosphatases. 9. Both cytosolic and microsomal protein phosphatases display activity towards histone H2B and casein.  相似文献   

19.
The cAMP-dependent protein kinase-induced effects on phosphorylase and glycogen synthase activities and glucose production were studied in hepatocytes isolated from fed rats in the presence of the diastereomers of adenosine cyclic 3',5'-phosphorothioate, (Sp)-cAMPS and (Rp)-cAMPS. Incubation of hepatocytes with (Sp)-cAMPS or glucagon, both of which lead to cAMP-dependent protein kinase activation, resulted in a concentration-dependent increase in glycogen phosphorylase activity and a decrease in glycogen synthase activity. Incubation of hepatocytes with the cAMP-dependent protein kinase antagonist, (Rp)-cAMPS, in the absence of an agonist, had no significant effect on phosphorylase or glycogen synthase activities. Incubation of hepatocytes with a half-maximally inhibitory concentration of (Rp)-cAMPS shifted the agonist-induced activation curves for phosphorylase and the agonist-induced inhibition curves for glycogen synthase to 5-fold higher concentrations for both (Sp)-cAMPS and glucagon. Phosphorylase activity was very sensitive to the rapid, concentration-dependent inhibition by (Rp)-cAMPS of agonist-induced activation of cAMP-dependent protein kinase. The effects on phosphorylase activity were observable in 30 s and were concentration-dependent with half-maximal inhibition at 10 microM, similar to that observed for cAMP-dependent protein kinase. In contrast, glycogen synthase activity was less sensitive to (Rp)-cAMPS inhibition of agonist-induced activation of cAMP-dependent protein kinase. The effects on glycogen synthase activity lagged behind those on phosphorylase activity and the concentration dependence did not parallel the cAMP-dependent protein kinase effect, but was shifted to higher concentrations of (Rp)-cAMPS with half-maximal inhibition at 60 microM. Glucose (10 to 40 mM) increased the sensitivity of glycogen synthase to (Rp)-cAMPS inhibition of cAMP-dependent protein kinase over a narrow range of agonist concentration, but had no significant effect throughout most of the agonist-induced activation range. Thus, the diastereomers, (Sp)- and (Rp)-cAMPS, influence glycogen metabolism and the glycogenolytic enzymes through their modulation of cAMP-dependent protein kinase levels.  相似文献   

20.
The role of protein kinase C (PK-C) in the early metabolic events involved in human natural killer (NK) cell activation has been studied through the action of PK-C-specific activators and inhibitors. Highly purified human large granular lymphocytes (LGL) were treated for 1 hr with the diacylglycerol analog 1-oleoyl-2-acetyl glycerol (OAG) (10(-4)-10(-5) g/ml) or with 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-8)-10(-10) g/ml), both specific activators of PK-C. Both these agents consistently increased NK activity against K562 target cells. Suboptimal doses of either OAG or TPA also synergized with Ca2+ ionophores to augment spontaneous cytotoxic activity. Pretreatment of LGL with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrocloride (H7) (5-40 microM), a potent PK-C inhibitor, greatly reduced NK activity in a time- and dose-dependent fashion. By contrast, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride (HA 1004), a potent cAMP- and cGMP-dependent PK inhibitor with almost no effect on PK-C, marginally reduced NK activity. Moreover, almost complete NK activity inhibition was observed when H7 (10 microM), but not HA 1004 (50 microM), was present in the NK assay. Finally, 48 hr stimulation of LGL with TPA (10(-6) g/ml), a treatment able to inactivate most of the PK-C cellular pool, almost completely abrogated NK activity. This functional evidence was supported by phosphorylation of several endogenous substrates which occurs within 5 min in TPA-treated LGL. Two proteins of 70 and 56 kDa have been identified as major PK-C substrates, together with other phosphorylated proteins with MW ranging from 177 to 43 kDa. H7, but not HA 1004, almost completely inhibited the TPA-induced phosphorylation of all of these proteins in the NK cells. These data strongly suggest that selective activation of PK-C plays an essential role in the mechanisms of NK cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号