首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent techniques were used to study binding of peptide elongation factor Tu (EF-Tu) to Escherichia coli ribosomes and to determine the distances of the bound factor to points on the ribosome. Thermus thermophilus EF-Tu was labeled with 3-(4-maleimidylphenyl)-4-methyl-7-(diethyl-amino)coumarin (CPM) without loss of activity. In the presence of Phe-tRNA and a nonhydrolyzable analogue of GTP, 70S ribosomes bind the CPM-EF-Tu [Kb = (3 +/- 1.2) X 10(6) M-1] causing a decrease of CPM fluorescence. Binding of CPM-EF-Tu to 50S subunits was at least 1 order of magnitude lower than with 70S ribosomes, and binding to 30S subunits could not be detected. Reconstituted 70S ribosomes containing either S1 labeled with fluoresceinmaleimide or ribosomal RNAs labeled at their 3' ends with fluorescein thiosemicarbazide were used for energy transfer from CPM-EF-Tu. The distances between CPM-EF-Tu bound to the ribosomes and the 3' ends of 16S RNA, 5S RNA, 23S RNA, and the closest sulfhydryl group of S1 were calculated to be 82, 70, 73, and 62-68 A, respectively.  相似文献   

2.
3.
4.
A protein existing mainly in the supernatant fraction of Escherichia coli was found to be methylated by accepting the methyl moiety originating from methionine. The protein was identified as peptide synthesis elongation factor Tu (EF-Tu) by the following criteria. 1) The methylatable protein separated at the same position as purified EF-Tu on two-dimensional gel electrophoresis. 2) The methylatable protein interacted with antiserum specific for EF-Tu. Amino acid analysis of the methyl-labeled protein suggested that the site of methylation was an epsilon-amino group of lysine.  相似文献   

5.
Interaction of cinnamyl-tRNAPhe with Escherichia coli elongation factor Tu   总被引:1,自引:0,他引:1  
The products of nitrous acid mediated-deamination of Phe-tRNAPhe from E. coli were analyzed and their capability to interact with elongation factor Tu from E. coli was investigated. Thin-layer chromatography as well as HPLC analysis revealed the existence of at least two deamination products, 3-phenyl-lactyl-tRNAPhe and cinnamyl-tRNAPhe. It could be shown that the aminoacyl-tRNA analogues were active in the formation of the ternary complex with EF-Tu X GTP, although with a lower efficiency than native Phe-tRNAPhe. For both modified acyl-tRNAs the dissociation constant was determined to be 3 X 10(-5) M.  相似文献   

6.
Barends S  Wower J  Kraal B 《Biochemistry》2000,39(10):2652-2658
Aminoacylation and transportation of tmRNA to stalled ribosomes constitute prerequisite steps for trans-translation, a process facilitating the release of stalled ribosomes from 3' ends of truncated mRNAs and the degradation of incompletely synthesized proteins. Kinetic analysis of the aminoacylation of tmRNA indicates that tmRNA has both a lower affinity and a lower turnover number than cognate tRNA(Ala) for alanyl-tRNA synthetase, resulting in a 75-fold lower k(cat)/K(M) value. The association rate constant of Ala-tmRNA for elongation factor Tu in complex with GTP is about 150-fold lower than that of Ala-tRNA(Ala), whereas its dissocation rate constant is about 5-fold lower. These observations can be interpreted to suggest that additional factors facilitate tmRNA binding to ribosomes.  相似文献   

7.
The fidelity of protein synthesis depends on the rate constants for the reaction of ribosomes with ternary complexes of elongation factor Tu (EF-Tu), GTP, and aminoacyl (aa)-tRNA. By measuring the rate constants for the reaction of poly(U)-programmed ribosomes with a binary complex of elongation factor (EF-Tu) and GTP we have shown that two of the key rate constants in the former reaction are determined exclusively by ribosome-EF-Tu interactions and are not affected by the aa-tRNA. These are the rate constant for GTP hydrolysis, which plays an important role in the fidelity of ternary complex selection by the ribosome, and the rate constant for EF-Tu.GDP dissociation from the ribosome, which plays an equally important role in subsequent proofreading of the aa-tRNA. We conclude that the fidelities of ternary complex selection and proofreading are fundamentally dependent on ribosome-EF-Tu interactions. These interactions determine the absolute value of the rate constants for GTP hydrolysis and EF-Tu.GDP dissociation. The ribosome then uses these rate constants as internal standards to measure, respectively, the rate constants for ternary complex and aa-tRNA dissociation from the ribosome. These rates, in turn, are highly dependent on whether the ternary complex and aa-tRNA are cognate or near-cognate to the codon being translated.  相似文献   

8.
M R Ahmadian  R Kreutzer  M Sprinzl 《Biochimie》1991,73(7-8):1037-1043
The elongation factor Tu (EF-Tu) encoded by the tufl gene of the extreme thermophilic bacterium Thermus thermophilus HB8 was expressed under control of the tac promoter from the recombinant plasmid pEFTu-10 in Escherichia coli. Thermophilic EF-Tu-GDP, which amounts to as much as 35% of the cellular protein content, was separated from the E coli EF-Tu-GDP by thermal denaturation at 60 degrees C. The overproduced E coli-born T thermophilus EF-Tu was characterized by: i) recognition through T thermophilus anti-EF-Tu antibodies; ii) analysis of the peptides obtained by cyanogen bromide cleavage; iii) thermostability; iv) guanine nucleotide binding activity in the absence and the presence of elongation factor Ts; and v) ternary complex formation with phenylalanyl-tRNAPhe and GTP.  相似文献   

9.
The interaction of 18 different Escherichia coli aminoacyl-tRNA species with elongation factor Tu and GTP has been measured by a fluorescence titration assay under equilibrium conditions. The dissociation constants range from 1.9 +/- 0.2.10(-10) M up to 1020 +/- 250.10(-10) M depending on the nucleotide sequence, secondary structure and the chemical composition of the aminoacyl residue of the particular aminoacyl-tRNA. The 'aminoacyl domain' of tRNA consisting of the single stranded, four-nucleotide-long 3'-terminus, aminoacyl stem of seven base-pairs, T-stem and T-loop contains all elements necessary for binding EF-Tu.GTP. The efficiency of aminoacyl-tRNA interaction with EF-Tu.GTP is modulated by the sequence of this 'aminoacyl domain' and by natural modification of its nucleotide residues. An oligoribonucleotide resembling the aminoacyl stem of E.coli tRNA(Ala) and consisting of a four-membered 3'-end, a stem of seven base-pairs and a loop of six nucleotides was prepared by total chemical synthesis on a polymer support. It can be enzymatically aminoacylated by alanine but does not bind in its aminoacylated form to EF-Tu.GTP.  相似文献   

10.
A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-Tu. These mutations are R154C, P168L, A174V, K176E, D181G, E190K, D196G, S197F, and I199V. All suppression mutations but one (R154C) significantly affect EF-Tu's ability to interact with EF-Ts under equilibrium conditions. Moreover, with the exception of mutation A174V, the GDP affinity of EF-Tu appears to be relatively unaffected by these mutations. These results suggest that the domain of residues 154 to 199 on EF-Tu is involved in interacting with EF-Ts. These suppression mutations are also capable of suppressing dominant negative mutants N135D and N135I to various degrees. This suggests that dominant negative mutants N135D and N135I are likely to have the same molecular basis as the K136E mutation. The method we have developed in this study is versatile and can be readily adapted to map other regions of EF-Tu. A model of EF-Ts-catalyzed guanine-nucleotide exchange is discussed.  相似文献   

11.
The pre-steady-state kinetics of GTP hydrolysis catalysed by elongation factor G and ribosomes from Escherichia coli has been investigated by the method of quenched-flow. The GTPase activities either uncoupled from or coupled to the ribosomal translocation process were characterized under various experimental conditions. A burst of GTP hydrolysis, with a kapp value greater than 30 s-1 (20 degrees C) was observed with poly(U)-programmed vacant ribosomes, either in the presence or absence of fusidic acid. The burst was followed by a slow GTP turnover reaction, which disappears in the presence of fusidic acid. E. coli tRNAPhe, but not N-acetylphenylalanyl-tRNAPhe (N-AcPhe-tRNAPhe), stimulates the GTPase when bound in the P site. If the A site of poly(U)-programmed ribosomes, carrying tRNAPhe in the P site, is occupied by N-AcPhe-tRNAPhe, the burst of Pi discharge is replaced by a slow GTP hydrolysis. Since, under these conditions, N-AcPhe-tRNAPhe is translocated from the A to the P site, this GTP hydrolysis very probably represents a GTPase coupled to the translocation reaction.  相似文献   

12.
Three-dimensional models of the GDP and GTP forms of the guanine nucleotide domain of Escherichia coli elongation factor Tu have been derived from the atomic coordinates of the trypsin-modified form of EF-Tu-GDP and by comparison with the ras p21 structures. The significance of the differences in the guanine nucleotide binding sites of EF-Tu and ras p21 are discussed. Crystallization of the EF-Tu-GMPPNP complex is reported.  相似文献   

13.
Methods of high-speed centrifugation and limited proteolysis were used to probe the interaction of EF-Tu with EF-Ts on the ribosome. It is shown that EF-Ts dissociates from EF-Tu only after EF-Tu-mediated GTP hydrolysis, i.e. EF-Ts within the EF-Tu.ribosome complexes in the pre-GTP-hydrolysis state co-sediments with the ribosomes and its rate of proteolysis is distinct from that of free EF-Ts. Moreover, as seen from the difference in sensitivity to trypsin of ribosomal proteins L19 and L27 EF-Ts affects the interaction of EF-Tu with the ribosome.  相似文献   

14.
The interaction between Escherichia coli aminoacyl-tRNAs and elongation factor Tu (EF-Tu) x GTP was examined. Ternary complex formation with Phe-tRNAPhe and Lys-tRNALys was compared to that with the respective misaminoacylated Tyr-tRNAPhe and Phe-tRNALys. There was no pronounced difference in the efficiency of aminoacyl-tRNA x EF-Tu x GTP complex formation between Phe-tRNAPhe and Tyr-tRNAPhe. However, Phe-tRNALys was bound preferentially to EF-Tu x GTP as compared to Lys-tRNALys. This was shown by the ability of EF-Tu x GTP to prevent the hydrolysis of the aminoacyl ester linkage of the aminoacyl-tRNA species. Furthermore, gel filtration of ternary complexes revealed that the complex formed with the misaminoacylated tRNALys was also more stable than the one formed with the correctly aminoacylated tRNALys. Both misaminoacylated aminoacyl-tRNA species could participate in the ribosomal peptide elongation reaction. Poly(U)-directed synthesis of poly(Tyr) using Tyr-tRNAPhe occurred to a comparable extent as the synthesis of poly(Phe) with Phe-tRNAPhe. In the translation of poly(A) using native Lys-tRNALys, poly(Lys) reached a lower level than poly(Phe) when Phe-tRNALys was used. It was concluded that the side-chain of the amino acid linked to a tRNA affects the efficiency of the aminoacyl-tRNA x EF-Tu x GTP ternary complex formation.  相似文献   

15.
Mitochondrial DNA from Ustilago cynodontis has been investigated in several of its properties. Its dG + dC content is equal to 33.5%; its buoyant density (1.698 g/cm3) is higher, by 5 mg/cm3, and its melting temperature (82.5 degrees C) is lower than expected for a bacterial DNA having the same base composition; the first derivative of its melting curve indicates a large compositional heterogeneity, its molarity of elution from hydroxyapatite is high, 0.28 M phosphate, and allows its partial separation from nuclear DNA. Degradation by micrococcal nuclease indicates that about 25% of the DNA is formed by stretches having no more than 15% dG + dC. Finally, the unit size of mitochondrial genome is about 50 X 10(6). In most of its properties, the mitochondrial genome of U. cynodontis presents strong analogies with that of Saccharomyces cerevisiae. A parallel investigation on mitochondrial DNA from Acanthamoeba castellanii which has as genome unit size of only 27 X 10(6), has shown that this shares with the former the dG + dC content (32.9%), the melting temperature (82.5 degrees C), a large compositional heterogeneity and a very similar pattern of micrococcal nuclease degradation; its buoyant density (1.692 g/cm3) and its molarity of elution from hydroxyapatite (0.25 M phosphate) are, however, normal, probably because of a different short-sequence pattern and the fact that its dA + dT-rich stretches are shorter, on the average.  相似文献   

16.
17.
18.
19.
Limited proteolysis of native elongation factor Tu (Mr 44 000) by trypsin occurs in at least three distinct steps. The first intermediate arises through cleavage at a site about 65 residues from the amino-terminal end of the protein. It is functionally active [Jacobson, G. R. & Rosenbusch, J. P. (1976) Biochemistry, 15, 5105-5110] and is partially protected from further degradation by the antibiotic kirromycin. The second step converts this intermediate to one of similar size (Mr 37 000) which now is partially inactivated. It is likely to be identical with the intermediate described by Arai et al. [(1976) J. Biochem. Tokyo, 79, 69-83]. In the third step, the partially inactive intermediate is cleaved without any apparent change in the functional properties tested. The resulting two trypsin-resistant fragments have molecular weights of 24 000 and 14 000, and remain associated under nondenaturing conditions. When either of these polypeptides, after isolation in 8 M urea, is allowed to renature, no significant reactivation of GDP binding is observed unless the isolated fragments are mixed before renaturation. These results show that the two fragments are structurally and functionally interdependent.  相似文献   

20.
Pulvomycin and kirromycin, two antibiotics which inhibit protein biosynthesis in Escherichia coli by complex formation with the elongation factor Tu (EF-Tu), bind to different sites on the protein. While only one molecule of kirromycin can be bound to one molecule of EF-Tu, more than one molecule of pulvomycin interacts with a molecule of EF-Tu. This has been deduced from experiments in which the aminoacyl-tRNA binding and the GTPase activity of EF-Tu were measured in the presence of varying amounts of both antibiotics. These experiments are interpreted to mean that pulvomycin but not kirromycin can replace the other antibiotic in its respective site. Our conclusions are supported by circular dichroism spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号