首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate constants have been determined for elementary steps in the basal GTPase mechanism of normal p21N-ras (Gly-12) and an oncogenic mutant (Asp-12): namely GTP binding, hydrolysis, phosphate release, and GDP release. By extrapolation from data at lower temperatures, the GTP association rate constant at 37 degrees C is 1.4 x 10(8) M-1 s-1 for the normal protein and 4.8 x 10(8) M-1 s-1 for the mutant. Other rate constants were measured directly at 37 degrees C, and three processes have similar slow values. GTP dissociation is at 1.0 x 10(-4) s-1 (normal) and 5.0 x 10(-4) s-1 (mutant). The hydrolysis step is at 3.4 x 10(-4) s-1 (normal) and 1.5 x 10(-4) s-1 (mutant). GDP dissociates at 4.2 x 10(-4) s-1 (normal) and 2.0 x 10(-4) s-1 (mutant). GDP association rate constants are similar to those for GTP, 0.5 x 10(8) M-1 s-1 for normal and 0.7 x 10(8) M-1 s-1 for mutant. Both hydrolysis and GDP release therefore contribute to rate limitation of the basal GTPase activity. There are distinct differences (up to 5-fold) between rate constants for the normal and mutant proteins at a number of steps. The values are consistent with the reduced GTPase activity for this mutant and suggest little difference between normal and mutant proteins in the relative steady-state concentrations of GTP and GDP complexes that may represent active and inactive states. The results are discussed in terms of the likely role of p21ras in transmembrane signalling.  相似文献   

2.
M A Geeves  D R Trentham 《Biochemistry》1982,21(11):2782-2789
The time course of formation and decay of protein-bound adenosine 5'-triphosphate (ATP) has been monitored during single turnovers of the myosin subfragment 1 ATPase with nonspectrophotometric techniques. The rate constant controlling the ATP cleavage step increases markedly with ionic strength, so that in low salt the protein--ATP complex is observed transiently at higher concentration than the protein-products complex. The kinetics of the ATP cleavage step in a single turnover of the actosubfragment 1 ATPase indicates that under appropriate conditions this step is partially rate limiting during overall steady-state ATPase activity. It follows that a binary subfragment 1-ATP complex is a significant component of the steady-state intermediate of the actosubfragment 1 ATPase. Transient kinetic studies of ATP and adenosine 5'-(3-thiotriphosphate) [ATP (gamma S)] binding show directly that a substrate-induced protein isomerization accompanies ligand binding. The rate constant of the isomerization is 170 s-1 at pH 7.0, 15 degrees C, and 0.01 M ionic strength. Under these conditions nucleotide binding appears to be accompanied by a protein fluorescence increase that is 50% of the increase associated with magnesium-dependent steady-state ATPase activity.  相似文献   

3.
The mechanism of kinesin ATPase has been investigated by transient state kinetic analysis. The results satisfy the scheme [formula: see text] where T, D, and P(i) refer to nucleotide tri- and diphosphate and inorganic phosphate, respectively. The nucleotide-binding steps were measured by the fluorescence enhancement of mant (2'-(3')-O-(N-methylanthraniloyl)-ATP and mant-ADP. The initial rapid equilibrium binding steps (1) and (6) are followed by isomerizations (k2 = 170 +/- 30 s-1 at 20 degrees C, k-5 greater than 100 s-1). The increase in fluorescence is 20-25% larger for K.T** than K.D*. The rate constant of the hydrolysis step k3 is 6-7 s-1. The fluorescence decreases after formation of K.T** at a rate of 7-10 s-1. This change could occur in step 3 or in step 4 if k4 much greater than k3. The value of k4 is larger than 0.1 s-1. The steady state rate is 0.003 s-1 which agrees with the rate of ADP dissociation (k5). Step 5 is rate limiting in the scheme in agreement with the conclusion of Hackney (Hackney, D. D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6314-6318) that ADP dissociation is the rate-limiting step.  相似文献   

4.
The mechanism of the Mg2+-dependent myosin subfragment 1 catalyzed hydrolysis of GTP and 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5'-triphosphate (thioGTP) has been investigated by rapid-reaction techniques. The myosin was isolated from rabbit skeletal muscle. The steady-state intermediate of these reactions consists pre-dominantly of a protein-substrate complex unlike the myosin subfragment 1 ATPase reaction which has a protein-products complex as the principal steady-state component. The mechanism of GTP hydrolysis catalyzed by subfragment 1 has other marked differences from the ATPase mechanism. The second-order rate constant of binding of GTP to subfragment 1 is tenfold greater than that for GDP binding. The dissociation rate constant of GDP from subfragment 1 is 0.06 s-1 compared with the subfragment 1 catalytic center activity for GTP hydrolysis of 0.5 s-1 at pH 8.0 and 20 degrees C. This shows that GDP bound to subfragment 1 forms a complex which is not kinetically competent to be an intermediate of the GTPase mechanism. GDP is hydrolyzed in the presence of subfragment 1 to GMP and Pi. The subfragment 1 GTPase mechanism has a nuber if features in common with that of the elongation factor Tu GTPase of the protein biosynthetic system of Escherichia coli.  相似文献   

5.
Stopped-flow fluorescence spectroscopy has been used to study the reaction of human alpha-thrombin with recombinant hirudin variant 1 (rhir) at 37 degrees C and an ionic strength of 0.125 M. A 35% enhancement in intrinsic fluorescence accompanied formation of the thrombin-rhir complex. Over one third of this enhancement corresponded to a structural change that could be induced by binding of either the NH2-terminal fragment (residues 1-51) or the COOH-terminal fragment (residues 52-65) of rhir. Three kinetic steps were detected for reaction of thrombin with rhir. At high rhir concentrations (greater than or equal to 3 microM), two intramolecular steps with observed rate constants of 296 +/- 5 s-1 and 50 +/- 1 s-1 were observed. By using the COOH-terminal fragment of rhir as a competitive inhibitor, it was possible to obtain an estimate of 2.9 x 10(8) M-1 s-1 for the effective association rate constant at low rhir concentrations. At higher ionic strengths, this rate constant was lower, which is consistent with the formation of the initial complex involving an ionic interaction. The mechanism for the reaction of both the COOH- and NH2-terminal fragments of rhir appeared to involve two steps. When thrombin was reacted with the COOH-terminal fragment at high concentrations (greater than or equal to 6 microM), the bimolecular step occurred within the dead time of the spectrometer and only one intramolecular step, with a rate constant of 308 +/- 5 s-1 was observed. At concentrations of NH2-terminal fragment below 50 microM, its binding to thrombin appeared to be a bimolecular reaction with an association rate constant of 8.3 x 10(5) M-1 s-1. In the presence of saturating concentrations of the COOH-terminal fragment, a 1.7-fold increase in this rate constant was observed. At concentrations of NH2-terminal fragment greater than 50 microM, biphasic reaction traces were observed which suggests a two-step mechanism. By comparing the reaction amplitudes and dissociation constants observed with rhir and its COOH-terminal fragment, it was possible to obtain approximate estimates for the values of the rate constants of different steps in the formation of the rhir-thrombin complex.  相似文献   

6.
Kinetics of interaction of nucleotides with nucleotide-free H-ras p21   总被引:16,自引:0,他引:16  
A method is described for the convenient preparation of substantial quantities of nucleotide-free p21 or of 1:1 complexes with nucleotides other than GDP. The nucleotide-free protein has been used for kinetic studies of the binding of GDP and GTP, making use of the fluorescent analogues 3'-(methylanthraniloyl)-2'-deoxy-GDP and -GTP. Stopped-flow studies have led to the formulation of a two-step binding mechanism for both GDP and GTP, involving initial rapid but weak binding of the nucleotide followed by a relatively slow (10-20 s-1 at 25 degrees C; 3-5 s-1 at 5 degrees C) quasi-irreversible isomerization reaction. By use of a nonequilibrium competition method, guanosine and GMP have been shown to interact weakly but significantly with p21 (dissociation constants of 153 and 29 microM, respectively). The presence of guanosine or GMP at the active site of p21 leads to a marked stabilization of p21 against spontaneous denaturation when compared with the nucleotide- and nucleoside-free protein.  相似文献   

7.
GTP cyclohydrolase II catalyzes the conversion of GTP into a mixture of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (Compound 2), formate, and pyrophosphate. Moreover, GMP was recently shown to be formed as a minor product. The major product (Compound 2) serves as the first committed intermediate in the biosynthesis of the vitamin, riboflavin. Numerous pathogenic microorganisms are absolutely dependent on endogenous synthesis of riboflavin. The enzymes of this pathway are therefore potential drug targets, and mechanistic studies appear relevant for development of bactericidal inhibitors. Pre-steady state quenched flow analysis of GTP cyclohydrolase II shows the rate-determining step to be located at the beginning of the reaction sequence catalyzed by the enzyme. Thus, GTP is consumed at a rate constant of 0.064 s(-1), and the reaction product, Compound 2, is formed at an apparent rate constant of 0.062 s(-1). Stopped flow experiments monitored by multiwavelength photometry are well in line with these data. 2-Amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone triphosphate can serve as substrate for GTP cyclohydrolase II but does not fulfill the criteria for a kinetically competent intermediate. A hypothetical reaction mechanism involves the slow formation of a phosphoguanosyl derivative of the enzyme under release of pyrophosphate. The covalently bound phosphoguanosyl moiety is proposed to undergo rapid hydrolytic release of formate from the imidazole ring and/or hydrolytic cleavage of the phosphodiester bond.  相似文献   

8.
The interaction of human serum albumin with monomeric haemin has been investigated by detailed kinetic analysis in dimethyl sulphoxide/water (3:5, v/v). The results obtained under conditions of albumin saturation of haemin and under pseudo-single turnover conditions indicate that methaemalbumin is formed in a two-stage, single-intermediate process. The initial association between the haemin and human serum albumin is a chemically controlled process (k1 = 1.7 X 10(5) mol-1 . s-1 . dm3 at 24 degrees C); the variation of K1 with pH exhibited a well defined pK of 5.9. The overall equilibrium constant, calculated by using microscopic rate constants, is 1.1 (+/- 0.5) X 10(8) mol-1 at 24 degrees C. The data and conclusions are consistent with a general binding mechanism for albumin in which intermediate formation is followed by an entropy-controlled internalization of the ligand.  相似文献   

9.
The rate of GTP hydrolysis in the active site of transducin and that of the release of the phosphate thus formed have been measured. The former step has been found to be a rate-limiting one. The rate constant for GTP hydrolysis is equal to 0.027 s-1 at 23 degrees C, and 0.07 s-1 at 37 degrees C. Besides, it has been shown that the rate of GTPase reaction on the transducin alpha-subunit does not depend on the concentration of a complex of transducin beta- and gamma-subunits or on the presence of cGMP phosphodiesterase and a 48 kDa protein from rod outer segments. According to the results, GTP hydrolysis on transducin proceeds too slowly to account for the rapid quenching of a phosphodiesterase cascade in rod outer segments.  相似文献   

10.
Stopped-flow radiationless energy-transfer kinetics have been used to examine the effects of chloride on the hydrolysis of Dns-Lys-Phe-Ala-Arg by angiotensin converting enzyme. The kinetic constants for hydrolysis at pH 7.5 and 22 degrees C in the presence of 300 mM sodium chloride were KM = 28 microM and kcat = 110 s-1, and in its absence, KM = 240 microM and kcat = 68 s-1. The apparent binding constant for chloride was 4 mM, and the extent of chloride activation in terms of kcat/KM was 14-fold. The effects of chloride on the pre-steady-state were examined at 2 degrees C. In the presence of chloride, two distinct enzyme-substrate complexes were observed, suggesting multiple steps in substrate binding. The initial complex was formed during the mixing period (kobsd greater than 200 s-1) while the second complex was formed much more slowly (kobsd = 40 s-1 when [S] = 5 microM and [NaCl] = 150 mM). Strikingly, in the absence of chloride, only a single, rapidly formed enzyme-substrate complex was observed. These results are consistent with a nonessential activator kinetic mechanism in which the slow step reflects conversion of an initially formed complex, (E X Cl- X S)1, to a more tightly bound complex, (E X Cl- X S)2.  相似文献   

11.
Transient kinetic data of ATP binding and cleavage by cardiac myosin subfragment 1 (S1) were obtained by fluorescence stopped flow and analyzed by using computer modeling based on a consecutive, reversible two-step mechanism: (formula: see text) where M1 and M12 denote myosin species with enhanced fluorescence and K'O = K0/(K0[ATP] + 1). The kinetic constants K0, k12, k23, and k32 and the fractional contributions of M1 and M12 to the total fluorescence are analyzed over a range of systematically varied solution parameters. The initial ATP binding equilibrium (K0), which decreases with increasing pH, is facilitated by a positively charged protein residue with a pK of 7.1. An active-site charge of +1.5 is determined from the ionic strength dependence. The rate constants k12, k23, and k32 also exhibit pK's near neutrality but increase with increasing pH. The majority of the large (-54 kJ/mol) negative free energy of ATP binding occurs upon S1 isomerization, k12, and a large increase in entropy (183 J/kmol at 15 degrees C) is associated with the cleavage step. The equilibrium constant for the cleavage step, K2, is determined as 3.5 at pH 7.0, 15 degrees C, and 200 mM ionic strength. There are no significant changes in fractional contributions to total fluorescence enhancement due to solvent-dependent conformational changes of S1 in these data. When values for the combined rate constants are calculated and compared with those determined by graphical analysis, it is observed that graphical analysis overestimates the binding rate constant (K0k12) by 25% and the hydrolysis rate constant (k23 + k32) by as much as 30%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The elementary steps of contraction in rabbit fast twitch muscle fibers were investigated with particular emphasis on the mechanism of phosphate (Pi) binding/release, the mechanism of force generation, and the relation between them. We monitor the rate constant 2 pi b of a macroscopic exponential process (B) by imposing sinusoidal length oscillations. We find that the plot of 2 pi b vs. Pi concentration is curved. From this observation we infer that Pi released is a two step phenomenon: an isomerization followed by the actual Pi release. Our results fit well to the kinetic scheme: [formula: see text] where A = actin, M = myosin, S = MgATP (substrate), D = MgADP, P = phosphate, and Det is a composite of all the detached and weakly attached states. For our data to be consistent with this scheme, it is also necessary that step 4 (isomerization) is observed in process (B). By fitting this scheme to our data, we obtained the following kinetic constants: k4 = 56 s-1, k-4 = 129 s-1, and K5 = 0.069 mM-1, assuming that K2 = 4.9. Experiments were performed at pCa 4.82, pH 7.00, MgATP 5 mM, free ATP 5 mM, ionic strength 200 mM in K propionate medium, and at 20 degrees C. Based on these kinetic constants, we calculated the probability of each cross-bridge state as a function of Pi, and correlated this with the isometric tension. Our results indicate that all attached cross-bridges support equal amount of tension. From this, we infer that the force is generated at step 4. Detailed balance indicates that 50-65% of the free energy available from ATP hydrolysis is transformed to work at this step. For our data to be consistent with the above scheme, step 6 must be the slowest step of the cross-bridge cycle (the rate limiting step). Further, AM*D is a distinctly different state from the AMD state that is formed by adding D to the bathing solution. From our earlier ATP hydrolysis data, we estimated k6 to be 9 s-1.  相似文献   

13.
It has been shown before by (31)P NMR that Ras bound to the nonhydrolyzable GTP analogue guanosine 5'-O-(beta, gamma-imidotriphosphate) (GppNHp) exists in two conformations which are rapidly interconverting with a rate constant of 3200 s-1 at 30 degrees C [Geyer, M., et al. (1996) Biochemistry 35, 10308-10320]. Here we show that Ran complexed with GTP also exists in two conformational states, 1 and 2, which can be directly inferred from the occurrence of two (31)P NMR resonance lines for the gamma-phosphate group of bound GTP. The exchange between the two states is slow on the NMR time scale with a value of <200 s-1 at 5 degrees C for the corresponding first-order rate constants. In wild-type Ran, the equilibrium constant K' between the two states is 0.7 at 278 K, is different for various mutants, and is strongly dependent on the temperature. The standard enthalpy DeltaH degrees and the standard entropy DeltaS degrees for the conformational transitions determined from the NMR spectra are as follows: DeltaH degrees = 37 kJ mol-1 and DeltaS degrees = 130 J mol-1 K-1 for wild-type Ran.GTP. In complex with the Ran-binding protein RanBP1, one of the Ran.GTP conformations (state 2) is stabilized. The interaction of Ran with the guanine nucleotide exchange factor protein RCC1 was also studied by (31)P NMR spectroscopy. In the presence of nucleotide, the ternary complex of Ran.nucleotide.RCC1, an intermediate in the guanine nucleotide exchange reaction, could be observed. A model for the conformational transition of Ran.GTP is proposed where the two states observed are caused by the structural flexibility of the effector loop of Ran; in solution, state 2 resembles the GTP-bound form found in the crystal structure of the Ran-RanBP complex.  相似文献   

14.
The large change in fluorescence emission of 1-N6-etheno-2-aza-ATP (epsilon-aza-ATP) has been used to investigate the kinetic mechanism of etheno-aza nucleotide binding to bovine cardiac myosin subfragment 1 (myosin-S1) and actomyosin subfragment 1 (actomyosin-S1). The time course of nucleotide fluorescence enhancement observed during epsilon-aza-ATP hydrolysis is qualitatively similar to the time course of tryptophan fluorescence enhancement observed during ATP hydrolysis. In single turnover experiments, the nucleotide fluorescence rapidly increases to a maximum level, then decreases with a rate constant of 0.045 s-1 to a final level, which is about 30% of the maximal enhancement; a similar fluorescence enhancement is obtained by adding epsilon-aza-ADP to cardiac myosin-S1 or actomyosin-S1 under the same conditions (100 mM KCl, 10 mM 4-morpholinepropanesulfonic acid, 5 mM MgCl2, 0.1 mM dithiothreitol, pH 7.0, 15 degrees C). The kinetic data are consistent with a mechanism in which there are two sequential (acto)myosin-S1 nucleotide complexes with enhanced nucleotide fluorescence following epsilon-aza-ATP binding. The apparent second order rate constants of epsilon-aza-ATP binding to cardiac myosin subfragment 1 and actomyosin subfragment 1 are 2-12 times slower than those for ATP. Actin increases the rate of epsilon-aza-ADP dissociation from bovine cardiac myosin-S1 from 1.9 to 110 s-1 at 15 degrees C which can be compared to 0.3 and 65 s-1 for ADP dissociation under similar conditions. Although there are quantitative differences between the rate and equilibrium constants of epsilon-aza- and adenosine nucleotides to cardiac actomyosin-S1 and myosin-S1, the basic features of the nucleotide binding steps of the mechanism are unchanged.  相似文献   

15.
Direct evidence for GTP and GDP-Pi intermediates in microtubule assembly   总被引:9,自引:0,他引:9  
R Melki  M F Carlier  D Pantaloni 《Biochemistry》1990,29(38):8921-8932
Identification of the kinetic intermediates in GTP hydrolysis on microtubules and characterization of their assembly properties is essential in understanding microtubule dynamics. By using an improved glass filter assay that selectively traps microtubules with a dead time of 2 s and monitoring taxol-induced rapid assembly of microtubules from [gamma-32P,3H]GTP-tubulin 1:1 complex, direct evidence has been obtained for GTP- and GDP-Pi-microtubule transient states in the early stages of the polymerization process. A simple kinetic analysis of GTP hydrolysis on microtubules within two sequential pseudo-first-order processes led to apparent first-order rate constants of 0.065 s-1 for the cleavage of the gamma-phosphate and 0.02 s-1 for the liberation of Pi, assuming a simple random model. Apparent rate constants for GTP hydrolysis and Pi release were independent of the composition of the buffer used to polymerize tubulin. The significance of these values with respect to those derived from previous studies from this and other laboratories and the possibility of a vectorial model for GTP hydrolysis are discussed.  相似文献   

16.
The DNA polymerase from the bacteriophage T4 is part of a multienzyme complex required for the synthesis of DNA. As a first step in understanding the contributions of individual proteins to the dynamic properties of the complex, e.g., turnover, processivity, and fidelity of replication, the minimal kinetic schemes for the polymerase and exonuclease activities of the gene 43 protein have been determined by pre-steady-state kinetic methods and fit by computer simulation. A DNA primer/template (13/20-mer) was used as substrate; duplexes that contained more single-strand DNA resulted in nonproductive binding of the polymerase. The reaction sequence features an ordered addition of 13/20-mer followed by dATP to the T4 enzyme (dissociation constants of 70 nM and 20 microM) followed by rapid conversion (400 s-1) of the T4.13/20-mer.dATP complex to the T4.14/20-mer.PPi product species. A slow step (2 s-1) following PPi release limits a single turnover, although this step is bypassed in multiple incorporations (13/20-mer-->17/20-mer) which occur at rates > 400 s-1. Competition between correct versus incorrect nucleotides relative to the template strand indicates that the dissociation constants for the incorrect nucleotides are at millimolar values, thus providing evidence that the T4 polymerase, like the T7 but unlike the Klenow fragment polymerases, discriminates by factors > 10(3) against misincorporation in the nucleotide binding step. The exonuclease activity of the T4 enzyme requires an activation step, i.e., T4.DNA-->T4.(DNA)*, whose rate constants reflect whether the 3'-terminus of the primer is matched or mismatched; for matched 13/20-mer the constant is 1 s-1, and for mismatched 13T/20-mer, 5 s-1. Evidence is presented from crossover experiments that this step may represent a melting of the terminus of the duplex, which is followed by rapid exonucleolytic cleavage (100s-1). In the presence of the correct dNTP, primer extension is the rate-limiting step rather than a step involving travel of the duplex between separated exonuclease and polymerase sites. Since the rate constant for 13/20-mer or 13T/20-mer dissociation from the enzyme is 6 or 8 s-1 and competes with that for activation, the exonucleolytic editing by the enzyme alone in a single pass is somewhat inefficient (5 s-1/(8 s-1+5 s-1)), ca. 40%. Consequently, a major role for the accessory proteins may be to slow the rate of enzyme.substrate dissociation, thereby increasing overall fidelity and processivity.  相似文献   

17.
The mechanism of binding of N-AcPhe-tRNAPhe (yeast) to poly(U)-programmed Escherichia coli 30S ribosomal subunits and the effect of individual initiation factors (IF-1, IF-2, and IF-3) and GTP on this process have been studied by fluorescence stopped-flow kinetic measurements. The formation of the ternary complex was followed by an increase of both intensity and polarization of the fluorescence of a proflavin label located in the anticodon loop of the tRNA. The effect of the initiation factors and GTP is to increase the velocity of ternary complex formation (about 400-fold at 7 mM Mg2+). In the presence of the three initiation factors and GTP the formation of the ternary complex could be resolved into two partial reactions: a fast apparently second-order step (k12 = 5 x 10(6) M-1 s-1, k21 = 1.4 s-1) followed by a slow rearrangement step (k23 less than or equal to 0.1 s-1). The data suggest a mechanism in which the ternary complex is formed by at least two rearrangements of an initially formed preternary complex. The accelerating effects of both IF-2 and IF-3 can be understood by assuming a synergistic allosteric action of the factors on the 30S ribosomal subunit, whereas IF-1 appears to act indirectly by influencing the other two factors.  相似文献   

18.
The effects of hydrostatic pressure on the receptor-stimulated exchange of guanosine triphosphate (GTP) for guanosine diphosphate (GDP) on the a subunit of G proteins were studied in two congeneric marine teleost fishes that differ in their depths of distribution. The poorly hydrolyzable GTP analog [35S]guanosine 5'-[gamma-thio]triphosphate ([35S]GTP[S]) was used to monitor the modulation of signal transduction by the A1 adenosine receptor agonist N6-R-(phenylisopropyl)adenosine (R-PIA) in brain membranes of the scorpaenids Sebastolobus alascanus and S. altivelis. The maximal binding (Bmax) and dissociation constant (K(d)) values, determined from equilibrium binding isotherms at atmospheric pressure (5 degrees C), were similar in the two species. The Bmax values for these species are much lower than literature values for mammalian brain tissue (25 degrees C); however, the K(d) values of the teleost and mammalian G proteins are similar. The EC50 values for the A1 adenosine receptor agonist R-PIA were similar in the two species. Hydrostatic pressure of 204 atm altered the binding of [35S]GTP[S]; basal [35S]GTP[S] binding decreased 25%. The A1 adenosine receptor agonist R-PIA and the muscarinic cholinergic receptor agonist carbamyl choline stimulated [35S]GTP[S] binding at 1 and 204 atm. At atmospheric pressure the half-time (t1/2) of [35S]GTP[S] binding differed between the two species. The GTP[S] on rate (k(on)) is larger in the shallower-living S. alascanus. Increased hydrostatic pressure altered the time course, decreasing the t1/2 in both species. The pressures that elicit this change in the time course differ between the species. However, interpolating over the range of in situ pressures the species experience, the values are similar in the two species. The guanyl nucleotide binding properties of the G protein a subunits appear to be conserved at the environmental temperatures and pressures the species experience.  相似文献   

19.
A R Fersht  M M Kaethner 《Biochemistry》1976,15(15):3342-3346
Valyl-tRNA synthetase from Bacillus stearothermophilus activates thereonine and forms a 1:1 complex with threonyl adenylate, but it does not catalyze the net formation of threonyl-tRNAVal at pH 7.78 and 25 degrees C in the quenched flow apparatus it decomposes at a rate constant of 36s-1. During this process there is a transient formation of Thr-tRNAVal reaching a maximum at 25 ms and rapidly falling to zero after 150 ms. At the peak, 22% of the (14C) threonine from the complex is present as (14C) Thr-tRNA. The reaction may be quenched with phenol and the partially mischarged tRNA isolated. The enzyme catalyzes its hydrolysis with a rate constant of 40s-1. The data fit a kinetic scheme in which 62% of the threonine from the threonyl adenylate is transferred to the tRNA. This may be compared with the rate constant of 12s-1 at which 84% of the valine is transferred to tRNAVal from the enzyme-bound valyl adenylate, and the rate constant of 0.015s-1 for the subsequent hydrolysis of Val-tRNAVal. Inhibition studies indicate a distinct second site for hydrolysis. The translocation of the aminoacyl moiety between the two sites could be mediated by a transfer between the 2'-and 3'-OH groups of the terminal adenosine fo the tRNA. The hyperspecificity of the enzyme is based on discriminating between the two competing substrates twice: once against the undesired substrate in the synthetic step, and once against the desired substrate in the destructive step.  相似文献   

20.
R H Himes  H W Detrich 《Biochemistry》1989,28(12):5089-5095
The tubulins of Antarctic fishes, purified from brain tissue and depleted of microtubule-associated proteins (MAPs), polymerized efficiently in vitro to yield microtubules at near-physiological and supraphysiological temperatures (5, 10, and 20 degrees C). The dynamics of the microtubules at these temperatures were examined through the use of labeled guanosine 5'-triphosphate (GTP) as a marker for the incorporation, retention, and loss of tubulin dimers. Following attainment of a steady state in microtubule mass at 20 degrees C, the rate of incorporation of [3H]GTP (i.e., tubulin dimers) during pulses of constant duration decreased asymptotically toward a constant, nonzero value as the interval prior to label addition to the microtubule solution increased. Concomitant with the decreasing rate of label incorporation, the average length of the microtubules increased, and the number concentration of microtubules decreased. Thus, redistribution of microtubule lengths (probably via dynamic instability and/or microtubule annealing) appears to be responsible for the time-dependent decrease in the rate of tubulin uptake. When the microtubules had attained both a steady state in mass and a constant length distribution, linear incorporation of labeled tubulin dimers over time occurred at rates of 1.45 s-1 at 5 degrees C, 0.48 s-1 at 10 degrees C, and 0.18 s-1 at 20 degrees C. Thus, the microtubules displayed greater rates of subunit flux, or treadmilling, at lower, near-physiological temperatures. At each temperature, most of the incorporated label was retained by the microtubules during a subsequent chase with excess unlabeled GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号