首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052. C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.  相似文献   

2.
Glucose uptake and accumulation by Clostridium beijerinckii BA101, a butanol hyperproducing mutant, were examined during various stages of growth. Glucose uptake in C. beijerinckii BA101 was repressed 20% by 2-deoxyglucose and 25% by mannose, while glucose uptake in C. beijerinckii 8052 was repressed 52 and 28% by these sugars, respectively. We confirmed the presence of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) associated with cell extracts of C. beijerinckii BA101 by glucose phosphorylation by PEP. The PTS activity associated with C. beijerinckii BA101 was 50% of that observed for C. beijerinckii 8052. C. beijerinckii BA101 also demonstrated lower PTS activity for fructose and glucitol. Glucose phosphorylation by cell extracts derived from both C. beijerinckii BA101 and 8052 was also dependent on the presence of ATP, a finding consistent with the presence of glucokinase activity in C. beijerinckii extracts. ATP-dependent glucose phosphorylation was predominant during the solventogenic stage, when PEP-dependent glucose phosphorylation was dramatically repressed. A nearly twofold-greater ATP-dependent phosphorylation rate was observed for solventogenic stage C. beijerinckii BA101 than for solventogenic stage C. beijerinckii 8052. These results suggest that C. beijerinckii BA101 is defective in PTS activity and that C. beijerinckii BA101 compensates for this defect with enhanced glucokinase activity, resulting in an ability to transport and utilize glucose during the solventogenic stage.  相似文献   

3.
In vivo rates of glucose uptake and acid production by oral streptococci grown in glucose- or nitrogen-limited continuous culture and batch culture were compared with the glucose phosphorylation activities of harvested, decryptified cells. The strains examined contained significant phosphoenolpyruvate-phosphotransferase system (PTS) activity, measured by a glucose 6-phosphate (G6P) dehydrogenase-linked assay procedure, but this activity was insufficient to account for the in vivo glucose uptake rates. However, ATP was a superior phosphoryl donor to phosphoenolpyruvate, and unlike the PTS, phosphoryl transfer with ATP was insensitive to bacteriostatic concentrations of chlorhexidine, suggesting glucokinase-mediated G6P formation. Again, G6P formation from the PTS and glucokinase reactions was not commensurate with some of the glucose uptake rates observed, implying that other phosphorylation reactions must be occurring. Two novel reactions involving carbamyl phosphate and acetyl phosphate were identified in some of the strains. No G6P formation was detected with these potential phosphoryl donors, but in the presence of phosphoglucomutase, glucose 1-phosphate (G1P) formation was evident, which was insensitive to chlorhexidine. G1P is a precursor of glycogen, and good correlation was obtained between G1P formation activity and endogenous metabolism of washed cells measured either as a rate of acid production at a constant pH 7 or as a decrease in pH with time in the absence of titrant. A "league table" of abilities to synthesize G1P and produce acid from endogenous metabolism was compiled for oral streptococci grown in batch culture. This indicated that Streptococcus mutans Ingbritt and Streptococcus sanguis Challis were unable to form G1P or produce much acid endogenously, whereas increasing activities were obtained with Streptococcus salivarius, Streptococcus sanguis, and Streptococcus mitis. In particular, S. mitis had the highest G1P formation activities and was able to decrease the pH to less than 5 in 15 min by endogenous metabolism alone. The data are consistent with the intracellular accumulation of free glucose driven by proton motive force when PTS activities are low and the subsequent phosphorylation to either G6P for metabolism via glycolysis or G1P for glycogen biosynthesis. The accumulation of acetyl phosphate during glucose-limited growth and the availability of arginine for catabolism to carbamyl phosphate provide an explanation as to why some glucose-limited oral streptococci continue to synthesize glycogen under these conditions, which might prevail in plaque.  相似文献   

4.
Carbohydrate metabolism by the oral bacterium Streptococcus sanguis NCTC 7865 was studied using cells grown in a chemostat at pH 7.0 under glucose or amino acid limitation (glucose excess) over a range of growth rates (D = 0.05 h-1-0.4 h-1). A mixed pattern of fermentation products was always produced although higher concentrations of lactate were formed under amino acid limitation. Analysis of culture filtrates showed that arginine was depleted from the medium under all conditions of growth; a further supplement of 10 mM-arginine was also consumed but did not affect cell yields, suggesting that it was not limiting growth. Except at the slowest growth rate (D = 0.05 h-1) under glucose limitation, the activity of the glucose phosphotransferase (PTS) system was insufficient to account for the glucose consumed during growth, emphasizing the importance of an alternative method of hexose transport in the metabolism of oral streptococci. The PTS for a number of sugars was constitutive in S. sanguis NCTC 7865 and, even though the cells were grown in the presence of glucose, the activity of the sucrose-PTS was highest. The glycolytic activity of cells harvested from the chemostat was affected by the substrate, the pH of the environment, and their original conditions of growth. Glucose-limited cells produced more acid than those grown under conditions of glucose excess; at slow growth rates, in particular, greater activities were obtained with sucrose compared with glucose or fructose. Maximum rates of glycolytic activity were obtained at pH 8.0 (except for cells grown at D = 0.4 h-1 where values were highest at pH 7.0), while slow-growing, amino acid-limited cells could not metabolize at pH 5.0. These results are discussed in terms of their possible significance in the ecology of dental plaque and the possible involvement of these bacteria in the initiation but not the clinical progression of a carious lesion.  相似文献   

5.
The clostridia are a diverse group of obligately anaerobic bacteria with potential for the fermentative production of fuels, solvents and other chemicals. Several species exhibit a broad substrate range, but there have been few studies of the mechanisms involved in regulation of uptake and metabolism of fermentable carbohydrates.Clostridium beijerinckii(formerlyClostridium acetobutylicum) NCIMB 8052 exhibited transport activity for hexoses and hexitols. Glucose-grown cells transported glucose and fructose, but not galactose, glucitol (sorbitol) or mannitol, transport of which was induced by growth on the respective substrates. Phosphorylation of glucose, fructose, glucitol and mannitol by cell extracts was supported by phosphoenolpyruvate, indicating the involvement of a phosphotransferase system in uptake of these substrates. Fructose phosphorylation was also demonstrated by isolated membranes in the presence of fructose 1-phosphate, thus identifying this derivative as the product of the fructose phosphotransferase system. The presence of phosphotransferase activities in extracts prepared from cells grown on different carbon sources correlated with transport activities in whole cells, and the pattern of transport activities reflected the substrate preference of cells growing in the presence of glucose and another carbon source. Thus, glucose and fructose were co-metabolised, while utilization of glucitol was prevented by glucose, even in cells which were previously induced for glucitol metabolism. Of the substrates examined, only galactose appeared to be transported by a non-phosphotransferase mechanism, since a significant rate of phosphorylation of this sugar was supported by ATP rather than phosphoenolpyruvate.  相似文献   

6.
The glucose phosphotransferase system (PTS) of Clostridium acetobutylicum was studied by using cell extracts. The system exhibited a Km for glucose of 34 microM, and glucose phosphorylation was inhibited competitively by mannose and 2-deoxyglucose. The analogs 3-O-methylglucoside and methyl alpha-glucoside did not inhibit glucose phosphorylation significantly. Activity showed no dependence on Mg2+ ions or on pH in the range 6.0 to 8.0. The PTS comprised both soluble and membrane-bound proteins, which interacted functionally with the PTSs of Clostridium pasteurianum, Bacillus subtilis, and Escherichia coli. In addition to a membrane-bound enzyme IIGlc, sugar phosphorylation assays in heterologous systems incorporating extracts of pts mutants of other organisms provided evidence for enzyme I, HPr, and IIIGlc components. The HPr was found in the soluble fraction of C. acetobutylicum extracts, whereas enzyme I, and probably also IIIGlc, was present in both the soluble and membrane fractions, suggesting a membrane location in the intact cell.  相似文献   

7.
The glucose phosphotransferase system (PTS) of Clostridium acetobutylicum was studied by using cell extracts. The system exhibited a Km for glucose of 34 microM, and glucose phosphorylation was inhibited competitively by mannose and 2-deoxyglucose. The analogs 3-O-methylglucoside and methyl alpha-glucoside did not inhibit glucose phosphorylation significantly. Activity showed no dependence on Mg2+ ions or on pH in the range 6.0 to 8.0. The PTS comprised both soluble and membrane-bound proteins, which interacted functionally with the PTSs of Clostridium pasteurianum, Bacillus subtilis, and Escherichia coli. In addition to a membrane-bound enzyme IIGlc, sugar phosphorylation assays in heterologous systems incorporating extracts of pts mutants of other organisms provided evidence for enzyme I, HPr, and IIIGlc components. The HPr was found in the soluble fraction of C. acetobutylicum extracts, whereas enzyme I, and probably also IIIGlc, was present in both the soluble and membrane fractions, suggesting a membrane location in the intact cell.  相似文献   

8.
Abstract Sugar phosphates are formed in cell-free extracts of Streptomyces aureofaciens RIA57 from glucose or fructose in the presence of phosphoenolpyruvate. In contrast to the phosphorylation by adenosine 5'-triphosphate the kinetics of formation of glucose 6-phosphate via phosphoenolpyruvate (PEP) is nonlinear. The product of fructose phosphorylation (only fructose 6-phosphate was determined by paper chromatography) and the absence of 1-phosphofructokinase indicate that fructose metabolism in S. aureofaciens does not proceed via the phosphoenolpyruvate:sugar phosphotransferase system (PTS).  相似文献   

9.
A comprehensive approach to (13)C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drastic differences in intracellular flux depending on the carbon source applied. On fructose, flux through the pentose phosphate pathway (PPP) was only 14.4% of the total substrate uptake flux and therefore markedly decreased compared to that for glucose (62.0%). This result is due mainly to (i) the predominance of phosphoenolpyruvate-dependent phosphotransferase systems for fructose uptake (PTS(Fructose)) (92.3%), resulting in a major entry of fructose via fructose 1,6-bisphosphate, and (ii) the inactivity of fructose 1,6-bisphosphatase (0.0%). The uptake of fructose during flux via PTS(Mannose) was only 7.7%. In glucose-grown cells, the flux through pyruvate dehydrogenase (70.9%) was much less than that in fructose-grown cells (95.2%). Accordingly, flux through the tricarboxylic acid cycle was decreased on glucose. Normalized to that for glucose uptake, the supply of NADPH during flux was only 112.4% on fructose compared to 176.9% on glucose, which might explain the substantially lower lysine yield of C. glutamicum on fructose. Balancing NADPH levels even revealed an apparent deficiency of NADPH on fructose, which is probably overcome by in vivo activity of malic enzyme. Based on these results, potential targets could be identified for optimization of lysine production by C. glutamicum on fructose, involving (i) modification of flux through the two PTS for fructose uptake, (ii) amplification of fructose 1,6-bisphosphatase to increase flux through the PPP, and (iii) knockout of a not-yet-annotated gene encoding dihydroxyacetone phosphatase or kinase activity to suppress overflow metabolism. Statistical evaluation revealed high precision of the estimates of flux, so the observed differences for metabolic flux are clearly substrate specific.  相似文献   

10.
Glucose uptake by the heterofermentative lactic acid bacterium Oenococcus oeni B1 was studied at the physiological and gene expression levels. Glucose- or fructose-grown bacteria catalyzed uptake of [(14)C]glucose over a pH range from pH 4 to 9, with maxima at pHs 5.5 and 7. Uptake occurred in two-step kinetics in a high- and low-affinity reaction. The high-affinity uptake followed Michaelis-Menten kinetics and required energization. It accumulated the radioactivity of glucose by a factor of 55 within the bacteria. A large portion (about 80%) of the uptake of glucose was inhibited by protonophores and ionophores. Uptake of the glucose at neutral pH was not sensitive to degradation of the proton potential, Δp. Expression of the genes OEOE_0819 and OEOE_1574 (here referred to as 0819 and 1574), coding for secondary transporters, was induced by glucose as identified by quantitative real-time (RT)-PCR. The genes 1574 and 0819 were able to complement growth of a Bacillus subtilis hexose transport-deficient mutant on glucose but not on fructose. The genes 1574 and 0819 therefore encode secondary transporters for glucose, and the transports are presumably Δp dependent. O. oeni codes, in addition, for a phosphotransferase transport system (PTS) (gene OEOE_0464 [0464] for the permease) with similarity to the fructose- and mannose-specific PTS of lactic acid bacteria. Quantitative RT-PCR showed induction of the gene 0464 by glucose and by fructose. The data suggest that the PTS is responsible for Δp-independent hexose transport at neutral pH and for the residual Δp-independent transport of hexoses at acidic pH.  相似文献   

11.
The solventogenic clostridia have a considerable capacity to ferment carbohydrate substrates with the production of acetone and butanol, making them attractive organisms for the conversion of waste materials to valuable products. In common with other anaerobes, the clostridia show a marked dependence on the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) to accumulate sugars and sugar derivatives. In this study, we demonstrate that extracts of Clostridium beijerinckii grown on N-acetylglucosamine (GlcNAc) exhibit PTS activity for the amino sugar. The PTS encoded by the divergent genes cbe4532 (encoding the IIC and IIB domains) and cbe4533 (encoding a IIA domain) was shown to transport and phosphorylate GlcNAc and also glucose. When the genes were recombined in series under the control of the lac promoter in pUC18 and transformed into a phosphotransferase mutant (nagE) of Escherichia coli lacking GlcNAc PTS activity, the ability to take up and ferment GlcNAc was restored, and extracts of the transformant showed PEP-dependent phosphorylation of GlcNAc. The gene products also complemented an E. coli mutant lacking glucose PTS activity but were unable to complement the same strain for PTS-dependent mannose utilization. Both GlcNAc and glucose induced the expression of cbe4532 and cbe4533 in C. beijerinckii, and consistent with this observation, extracts of cells grown on glucose exhibited PTS activity for GlcNAc, and glucose did not strongly repress utilization of GlcNAc by growing cells. On the basis of the phylogeny and function of the encoded PTS, we propose that the genes cbe4532 and cbe4533 should be designated nagE and nagF, respectively.  相似文献   

12.
The membrane-bound, sugar-specific enzyme II (EII) component of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Streptococcus mutans Ingbritt is repressed by growth on glucose under various conditions in continuous culture. Compared with optimal PTS conditions (i.e., glucose limitation, dilution rate [D] of 0.1 h-1, and pH 7.0), EII activity for glucose (EIIGlc) and mannose (EIIMan) in cells grown at a D of 0.4 h-1 and pH 5.5 with the same glucose concentration was reduced 24- to 27-fold. EII activity with methyl alpha-glucoside and 2-deoxyglucose was reduced 6- and 26-fold, respectively. Growth with excess glucose (i.e., nitrogen limitation) resulted in 26- to 88-fold repression of EII activity with these substrates. The above conditions of low pH, high dilution rate, and excess glucose also repressed EII activity for fructose (EIIFru), but to a lesser extent (two- to fivefold). Conversely, growth of S. mutans DR0001 at a D of 0.2 h-1 and pH 5.5 resulted in increased EIIGlc and EIIMan activity. Unlike the EII component, the HPr concentration in S. mutans Ingbritt varied only twofold (5.5 to 11.4 nmol/mg of protein) despite growth at pH 5.5 with limiting and excess glucose. The HPr concentrations in S. mutans DR0001 and the glucose-PTS-defective mutant DR0001/6 were similar. In a companion study, the soluble components of the PTS (i.e., HPr, EI, and EIIILac) in Streptococcus sobrinus grown on limiting lactose in a chemostat were not influenced significantly by growth at various pHs (7.0 and 5.0) and growth rates (D of 0.1, 0.54, and 0.8 h-1). However, growth on lactose resulted in repression of both EIIGlc and EIIFru, confirming earlier results with batch-grown cells. Thus, the glucose-PTS in some strains of S. mutans is regulated at the level of EII synthesis by certain environmental conditions.  相似文献   

13.
Factors affecting hexose phosphorylation in Acetobacter xylinum   总被引:4,自引:1,他引:3       下载免费PDF全文
Fructose was oxidized and converted to cellulose by cells of Acetobacter xylinum grown on fructose or succinate, but not by cells grown on glucose. In resting fructose-grown cells, glucose strongly suppressed fructose utilization. Extracts obtained from fructose- or succinate-grown cells catalyzed the adenosine triphosphate (ATP)-dependent formation of the 6-phosphate esters of glucose and fructose, whereas glucose-grown cell extracts phosphorylated glucose but not fructose. Fructokinase and glucokinase activities were separated and partially purified from cells grown on glucose, fructose, or succinate. Whereas fructokinase phosphorylated fructose only, glucokinase was active towards glucose and less active towards mannose and glucosamine. The optimal pH for the fructokinase was 7.4 and for the glucokinase was 8.5. The K(m) values for the fructokinase were: fructose, 6.2 mm; and ATP, 0.83 mm. The K(m) values for the glucokinase were: glucose, 0.22 mm; and ATP, 4.2 mm. Fructokinase was inhibited by glucose, glucosamine, mannose, and deoxyglucose in a manner competitive with respect to fructose, with K(i) values of 0.1, 0.14, 0.5, and 7.5 mm, respectively. Adenosine diphosphate (ADP) and adenosine monophosphate (AMP) inhibited both kinases noncompetitively with respect to ATP. The K(i) values were: 1.8 mm (ADP) and 2.1 mm (AMP) for fructokinase, and 2.2 mm (ADP) and 9.6 mm (AMP) for glucokinase. Fructose metabolism in A. xylinum appears to be regulated by the synthesis and activity of fructokinase.  相似文献   

14.
Pseudomonas aeruginosa transports and phosphorylates fructose via a phosphoenolpyruvate-dependent fructose phosphotransferase system (PTS). Mutant strains deficient in both PTS activity and glucose-6-phosphate dehydrogenase activity were isolated and were used to select mannitol-utilizing revertant strains singly deficient in PTS activity. These mutants were unable to utilize fructose as a carbon source and failed to accumulate exogenously provided [14C]fructose, and crude cell extracts lacked phosphoenolpyruvate-dependent fructose PTS activity. Thus, the PTS was essential for the uptake and utilization of exogenously provided fructose by P. aeruginosa. Mutations at a locus designated pts, which resulted in a loss of PTS activity, exhibited 57% linkage to argF at 55 min on the chromosome in plasmid R68.45-mediated conjugational crosses. The pts mutations in four independently isolated mutant strains exhibited from 11 to 20% linkage to argF, and one of these mutations exhibited 3% linkage to lys-9015 in phage F116L-mediated transductional crosses.  相似文献   

15.
An inducible phosphoenolpyruvate:fructose phosphotransferase system has been detected in Azospirillum brasilense, which requires a minimum of two components of the crude extracts for activity: (i) a soluble fraction (enzyme I) and (ii) a membrane fraction (enzyme II). The uninduced cells neither show any uptake of fructose nor express activity of either of these two enzyme fractions. C-1 of fructose is the site of phosphorylation. This phosphotransferase system does not accept glucose as a substrate for phosphorylation.  相似文献   

16.
In vitro studies with purified glycerol kinase from Enterococcus faecalis have established that this enzyme is activated by phosphorylation of a histidyl residue in the protein, catalyzed by the phosphoenolpyruvate-dependent phosphotransferase system (PTS), but the physiological significance of this observation is not known. In the present study, the regulation of glycerol uptake was examined in a wild-type strain of E. faecalis as well as in tight and leaky ptsI mutants, altered with respect to their levels of enzyme I of the PTS. Glycerol kinase was shown to be weakly repressible by lactose and strongly repressible by glucose in the wild-type strain. Greatly reduced levels of glycerol kinase activity were also observed in the ptsI mutants. Uptake of glycerol into intact wild-type and mutant cells paralleled the glycerol kinase activities in extracts. Glycerol uptake in the leaky ptsI mutant was hypersensitive to inhibition by low concentrations of 2-deoxyglucose or glucose even though the rates and extent of 2-deoxyglucose uptake were greatly reduced. These observations provide strong support for the involvement of reversible PTS-mediated phosphorylation of glycerol kinase in the regulation of glycerol uptake in response to the presence or absence of a sugar substrate of the PTS in the medium. Glucose and 2-deoxyglucose were shown to elicit rapid efflux of cytoplasmic [14C]lactate derived from [14C]glycerol. This phenomenon was distinct from the inhibition of glycerol uptake and was due to phosphorylation of the incoming sugar by cytoplasmic phosphoenolpyruvate. Lactate appeared to be generated by sequential dephosphorylation and reduction of cytoplasmic phosphoenolpyruvate present in high concentrations in resting cells. The relevance of these findings to regulatory phenomena in other bacteria is discussed.  相似文献   

17.
Carbohydrate Utilization in Lactobacillus sake   总被引:5,自引:2,他引:3       下载免费PDF全文
The ability of Lactobacillus sake to use various carbon sources was investigated. For this purpose we developed a chemically defined medium allowing growth of L. sake and some related lactobacilli. This medium was used to determine growth rates on various carbohydrates and some nutritional requirements of L. sake. Mutants resistant to 2-deoxy-d-glucose (a nonmetabolizable glucose analog) were isolated. One mutant unable to grow on mannose and one mutant deficient in growth on mannose, fructose, and sucrose were studied by determining growth characteristics and carbohydrate uptake and phosphorylation rates. We show here that sucrose, fructose, mannose, N-acetylglucosamine, and glucose are transported and phosphorylated by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS permease specific for mannose, enzyme II(supMan), was shown to be responsible for mannose, glucose, and N-acetylglucosamine transport. A second, non-PTS system, which was responsible for glucose transport, was demonstrated. Subsequent glucose metabolism involved an ATP-dependent phosphorylation. Ribose and gluconate were transported by PTS-independent permeases.  相似文献   

18.
Addition of glucose or fructose to cells of Saccharomyces cerevisiae adapted to grow in the absence of glucose induced an acidification of the intracellular medium. This acidification appeared to be due to the phosphorylation of the sugar since: (i) glucose analogues which are not efficiently phosphorylated did not induce internal acidification; (ii) glucose addition did not cause internal acidification in a mutant deficient in all the three sugar-phosphorylating enzymes; (iii) fructose did not affect the intracellular pH in a double mutant having only glucokinase activity; (iv) glucose was as effective as fructose in inducing the internal pH drop in a mutant deficient in phosphoglucose isomerase activity; and (v) in strains deficient in two of the three sugar-phosphorylating activities, there was a good correlation between the specific glucose- or fructose-phosphorylating activity of cell extracts and the sugar-induced internal acidification. In addition, in whole cells any of the three yeast sugar kinases were capable of mediating the internal acidification described. Glucose-induced internal acidification was observed even when yeast cells were suspended in growth medium and in cells suspended in buffer containing K+, which supports the possible signalling function of the glucose-induced internal acidification. Evaluation of internal pH by following fluorescence changes of fluorescein-loaded cells indicated that the change in intracellular pH occurred immediately after addition of sugar. The apparent Km for glucose in this process was 2 mM. Changes in both the internal and external pH were determined and it was found that the internal acidification induced by glucose was followed by a partial alkalinization coincident with the initiation of H+ efflux. This reversal of acidification could be due to the activity of the H+-ATPase, since it was inhibited by diethylstilboestrol. Coincidence between internal alkalinization and the H+ efflux was also observed after addition of ethanol.  相似文献   

19.
Fructose transport was not apparently affected in a number of Pseudomonas putida strains with deranged activity of a common glucose-gluconate uptake system, indicating the existence of an independent fructose uptake system. Fructose uptake by glucose-gluconate uptake mutants was induced by fructose and obeyed saturation kinetics (apparent K m =0.3 mM). The fructose uptake system serves to transport glucose in addition to fructose. The entry of fructose into P. putida cells appears to be mediated also by the glucose-gluconate uptake system, as shown by the ability to accumulate fructose of wild type cells grown on glucose, a substrate that induces the glucose-gluconate uptake system but not the fructose uptake system. In addition, fructose was found to be an inducer of the glucose-gluconate uptake system. The physiological significance of these observations is not clear because the fructose uptake system can provide the cell with a high enough internal concentration of fructose to support maximum growth rate on this hexose, as shown by following the growth course of glucose-gluconate uptake mutants on fructose.  相似文献   

20.
Active Transport of Biotin in Escherichia coli K-12   总被引:5,自引:3,他引:2       下载免费PDF全文
The transport of [(14)C]biotin into cells of a biotin prototroph, Escherichia coli K-12 strain Y10-1, was investigated. The vitamin taken up by the cells in this strain existed primarily in the free form. Addition of glucose enhanced the rate of uptake six- to eightfold and the steady level was reached in 2 to 3 min resulting in accumulation of biotin against a concentration gradient. The uptake showed marked dependence on temperature (Q(10), 2.3; optimum, 37 C) and pH (optimum 6.6) and was inhibited by iodoacetate. Energy of activation for glucose-dependent uptake was calculated to be 16,200 cal per mol. The rate of biotin uptake with increasing biotin concentrations showed saturation kinetics with an apparent K(m) and V(max) values of 1.4 x 10(-7) M and 6.6 pmol per mg of dry cells per min respectively. The cells also accumulated biotin against a concentration gradient in the absence of added glucose, although at a much lower rate. This accumulation was much more susceptible to inhibition by azide and uncouplers of oxidative phosphorylation suggesting that the energy source was supplied through the electron-transport chain. Inhibition studies with a number of biotin analogues indicated the requirement for an intact ureido ring. The biotin uptake was inhibited in cells grown in biotin-containing medium and was shown to be the result of repression of the transport system, suggesting the control of the biotin transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号