共查询到20条相似文献,搜索用时 8 毫秒
1.
DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines through an interplay of hydrogen bonding and cation-π interaction. Through molecular dynamics and quantum-chemistry calculations we investigate the methyl-cytosine recognition process and demonstrate that methylation enhances MBD-mDNA binding by increasing the hydrophobic interfacial area and by strengthening the interaction between mDNA and MBD proteins. Free-energy perturbation calculations also show that methylation yields favorable contribution to the binding free energy for MBD-mDNA complex. 相似文献
2.
Proteasome-dependent processing of nuclear proteins is correlated with their subnuclear localization
Although proteasomes are abundant in the nucleoplasm little is known of proteasome-dependent proteolysis within the nucleus. Thus, we monitored the subcellular distribution of nuclear proteins in correlation with proteasomes. The proteasomal pathway clears away endogenous proteins, regulates numerous cellular processes, and delivers immunocompetent peptides to the antigen presenting machinery. Confocal laser scanning microscopy revealed that histones, splicing factor SC35, spliceosomal components, such as U1-70k or SmB/B('), and PML partially colocalize with 20S proteasomes in nucleoplasmic substructures, whereas the centromeric and nucleolar proteins topoisomerase I, fibrillarin, and UBF did not overlap with proteasomes. The specific inhibition of proteasomal processing with lactacystin induced accumulation of histone protein H2A, SC35, spliceosomal components, and PML, suggesting that these proteins are normally degraded by proteasomes. In contrast, concentrations of centromeric proteins CENP-B and -C and nucleolar proteins remained constant during inhibition of proteasomes. Quantification of fluorescence intensities corroborated that nuclear proteins which colocalize with proteasomes are degraded by proteasome-dependent proteolysis within the nucleoplasm. These data provide evidence that the proteasome proteolytic pathway is involved in processing of nuclear components, and thus may play an important role in the regulation of nuclear structure and function. 相似文献
3.
Rauch C Trieb M Wibowo FR Wellenzohn B Mayer E Liedl KR 《Journal of biomolecular structure & dynamics》2005,22(6):695-706
CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations. As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be -3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove. 相似文献
4.
5.
6.
7.
8.
Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1 下载免费PDF全文
Voo KS Carlone DL Jacobsen BM Flodin A Skalnik DG 《Molecular and cellular biology》2000,20(6):2108-2121
9.
10.
11.
《Genomics》2020,112(3):2223-2232
Methyl-CpG binding domain proteins (MBD) can specifically bind to methylated CpG sites and play important roles in epigenetic gene regulation. Here, we identified and functionally characterized the MBD protein in Tribolium castaneum. T. castaneum genome encodes only one MBD protein: TcMBD2/3. RNA interference targeting this gene at different developmental stages caused lethal phenotypes including metamorphosis deficiency in larvae and pupae, gastrointestinal system problems and fecundity deficiency in adult. Moreover, Tcmbd2/3 knockdown adult showed progressive reduced locomoter activity, a typical neurodegeneration phenotype. This is a common feature of DNA methylation in mammals and has not been found in other insects. However, band shift assays demonstrated that TcMBD2/3 could not bind to methylated DNA, indicating the essential roles of TcMBD2/3 is independent of DNA methylation. Our study provides Tcmbd2/3 plays important roles in T. castaneum and gives new insights into the potential mechanism of action of MBD proteins in insect. 相似文献
12.
13.
14.
DNA methylation occurs in bacteria, fungi, plants and animals, however its role varies widely among different organisms. Even within animal genomes, methylation patterns vary substantially from undetectable in nematodes, to global methylation in vertebrate genomes. The number and variety of proteins containing methyl-CpG binding domains (MBDs) that are encoded in animal genomes also varies, with a general correlation between the extent of genomic methylation and the number of MBD proteins. We describe here the evolution of the MBD proteins and argue that the vertebrate MBD complement evolved to exploit the benefits and protect against the dangers of a globally methylated genome. 相似文献
15.
Many core oscillator components of the circadian clock are nuclear localized but how the phase and rate of their entry contribute to clock function is unknown. TOC1/PRR1, a pseudoresponse regulator (PRR) protein, is a central element in one of the feedback loops of the Arabidopsis clock, but how it functions is unknown. Both TOC1 and a closely related protein, PRR5, are nuclear localized, expressed in the same phase, and shorten period when deficient, but their molecular relationship is unclear. Here, we find that both proteins interact in vitro and in vivo through their conserved N‐termini. TOC1–PRR5 oligomerization enhances TOC1 nuclear accumulation two‐fold, most likely through enhanced nuclear import. In addition, PRR5 recruits TOC1 to large subnuclear foci and promotes phosphorylation of the TOC1 N‐terminus. Our results show that nuclear TOC1 is essential for normal clock function and reveal a mechanism to enhance phase‐specific TOC1 nuclear accumulation. Interestingly, this process of regulated nuclear import is reminiscent of similar oligomeric pairings in animal clock systems (e.g. timeless/period and clock/cycle), suggesting evolutionary convergence of a conserved mechanism across kingdoms. 相似文献
16.
17.
18.
DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. 总被引:8,自引:4,他引:8 下载免费PDF全文
MADS domain proteins are members of a highly conserved family found in all eukaryotes. Genetic studies clearly indicate that many plant MADS domain proteins have different regulatory functions in flower development, yet they share a highly conserved DNA binding domain and can bind to very similar sequences. How, then, can these MADS box genes confer their specific functions? Here, we describe results from DNA binding studies of AGL1 and AGL2 (for AGAMOUS-like), two Arabidopsis MADS domain proteins that are preferentially expressed in flowers. We demonstrate that both proteins are sequence-specific DNA binding proteins and show that each binding consensus has distinct features, suggestion a mechanism for specificity. In addition, we show that the proteins with more similar amino acid sequences have more similar binding sequences. We also found that AGL2 binds to DNA in vitro as a dimer and determined the region of AGL2 that is sufficient for DNA binding and dimerization. Finally, we show that several plant MADS domain proteins can bind to DNA either as homodimers or as heterodimers, suggesting that the number of different regulators could be much greater than the number of MADS box genes. 相似文献
19.
D Moraga A Rivas-Berrios G Farías M Wallin R B Maccioni 《Biochimica et biophysica acta》1992,1121(1-2):97-103
Estramustine-phosphate (EMP), a phosphorylated conjugate of estradiol and nor-nitrogen mustard binds to microtubule-associated proteins MAP-2 and tau. It was shown that this estramustine derivative inhibits the binding of the C-terminal tubulin peptide beta-(422-434) to both MAP-2 and tau. This tubulin segment constitutes a main binding domain for these microtubule-associated proteins. Interestingly, estramustine-phosphate interacted with the synthetic tau peptides V187-G204 and V218-G235, representing two major repeats within the conserved microtubule-binding domain on tau and also on MAP-2. This observation was corroborated by the inhibitory effects of estramustine-phosphate on the tau peptide-induced tubulin assembly into microtubules. On the other hand, the nonphosphorylated drug estramustine failed to block the MAP peptide-induced assembly, indicating that the negatively charged phosphate moiety of estramustine-phosphate is of importance for its inhibitory effect. These findings suggest that the molecular sites for the action of estramustine-phosphate are located within the microtubule binding domains on tau and MAP-2. 相似文献