首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-18 (IL-18) is a proinflammatory cytokine with multiple biological functions. We and others have demonstrated that an increased level of circulating IL-18 is one of the risk factors for cardiovascular diseases. Endothelin-1 (ET-1) has been reported to be a potent hypertrophy-promoting factor through RhoA and Rho-Kinase. Mechanical stretch induces a hypertrophic response, partly through the production of ET-1 through Endothelin A receptor (ETAR). Moreover, it has also been reported that mechanical stretch induces cardiac hypertrophy through Angiotensin subtype 1 receptor (AT1R). However, the mechanism by which the IL-18 gene expression is regulated in cardiomyocytes has not yet been fully understood. This study was designed to elucidate the functional significance of IL-18 gene expression in response to mechanical stretch. Neonatal rat cardiomyocytes cultured on silicone dishes were subjected to stretch. The moderate 20% mechanical stretch resulted in the elevation of IL-18 expression in a time-dependent manner with the maximal level achieved 36 hours after the stretch. Olmesartan, AT1R antagonist inhibited stretch-induced IL-18 expression. ETAR blockade BQ123 inhibited stretch-induced IL-18 expression. However, the Endothelin B receptor (ETBR) receptor blockade BQ788 did not inhibit this reaction. ET-1 induced IL-18 expression, with a peak induction after 4 hours of incubation. These results might suggest that stretch stimulation of cardiomyocytes induced ET-1 and, subsequently, ET-1 up-regulated the IL-18 expression. Furthermore, Fasudil, a Rho-Kinase inhibitor, and Simvastatin, a HMG-CoA reductase inhibitor, led to a significant reduction in mechanical stretch-induced IL-18 expression. These results indicated, for the first time, that IL-18 expression is induced by mechanical stretch in cardiomyocytes via the ETAR, AT1R, and the Rho/Rho-K pathways. The induction of IL-18 from cardiomyocytes by mechanical stress might cause the deterioration of cardiac functions in autocrine and paracrine fashion. The inhibition of IL-18 expression induced by mechanical stress might be one of the mechanisms that account for the beneficial cardiovascular effects of AT1R antagonist, ETAR blockade, Statin, and Rho-Kinase inhibitor.  相似文献   

2.
We established highly sensitive and specific sandwich-enzyme immunoassays (EIAs) for three newly discovered bioactive 31-amino acid endothelins [ETs(1-31)], which can detect as little as 0.16 pg/well of ET-1(1-31), 0.39 pg/well of ET-2(1-31), and 0.16 pg/well of ET-3(1-31). The EIAs showed no crossreactivity with 21-amino acid endothelins [ETs(1-21)] or big ETs at the usual assay concentrations below 1-5 ng/ml. In reversed-phase HPLC, immunoreactive ETs(1-31) in the granulocytes of normal human subjects eluted at the exact positions of authentic ETs(1-31), except for the presence of one additional unknown immunoreactive ET-1(1-31). The results also indicate that ETs(1-31) exist in the granulocytes at levels higher than or similar to those of ETs(1-21). This study is the first to establish EIAs for novel bioactive ETs(1-31). These assays can be utilized to assess the pathophysiological roles of ETs(1-31).  相似文献   

3.
Human blood eosinophils exhibit a hyperactive phenotype in response to chemotactic factors after cell "priming" with IL-5 family cytokines. Earlier work has identified ERK1/2 as molecular markers for IL-5 priming, and in this article, we show that IL-3, a member of the IL-5 family, also augments fMLP-stimulated ERK1/2 phosphorylation in primary eosinophils. Besides ERK1/2, we also observed an enhancement of chemotactic factor-induced Akt phosphorylation after IL-5 priming of human blood eosinophils. Administration of a peptide antagonist that targets the Src family member Lyn before cytokine (IL-5/IL-3) priming of blood eosinophils inhibited the synergistic increase of fMLP-induced activation of Ras, ERK1/2 and Akt, as well as the release of the proinflammatory factor leukotriene C(4). In this study, we also examined a human eosinophil-like cell line HL-60 clone-15 and observed that these cells exhibited significant surface expression of IL-3Rs and GM-CSFRs, as well as ERK1/2 phosphorylation in response to the addition of IL-5 family cytokines or the chemotactic factors fMLP, CCL5, and CCL11. Consistent with the surface profile of IL-5 family receptors, HL-60 clone-15 recapitulated the enhanced fMLP-induced ERK1/2 phosphorylation observed in primary blood eosinophils after priming with IL-3/GM-CSF, and small interfering RNA-mediated knockdown of Lyn expression completely abolished the synergistic effects of IL-3 priming on fMLP-induced ERK1/2 phosphorylation. Altogether, our data demonstrate a central role for Lyn in the mechanisms of IL-5 family priming and suggest that Lyn contributes to the upregulation of the Ras-ERK1/2 and PI3K-Akt cascades, as well as the increased leukotriene C(4) release observed in response to fMLP in "primed" eosinophils.  相似文献   

4.
An effective method for determination of the levels of newly discovered 31-amino acid endothelins [ETs(1-31)] as well as big ETs and 21-amino acid ETs [ETs(1-21)], in human lungs has been developed. About 85% of ETs in human lung homogenates were recovered on acid extraction 8 times. Most of the published protocols for the determination of tissue ETs involve a reverse-phase minicolumn to separate proteins from peptides, after which the levels of ETs are directly determined by enzyme immunoassay. The levels determined, however, include fairly high amounts of non-bioactive ET metabolites in tissues and the data reported are diverse. We established an effective methods for the extraction and the separation of nine different muscle constricting ETs from their metabolites on a reverse-phase C18 column. Using this protocol, the levels of ETs in human lungs were determined by means of a sandwich-enzyme immunoassay specific for each ET derivative. The levels of ET-2(1-21) were the highest among those of ETs, and the levels of ETs(1-31) were in a similar range to those of big ETs but were lower than those of ETs(1-21). This method can be utilized to assess the pathophysiological roles of ETs(1-31) in various human organs.  相似文献   

5.
Abstract: In primary cultured rat glial cells, a combination of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) stimulates production of nitrite via expression of the inducible form of nitric oxide synthase (iNOS). In these cells, simultaneous addition of endothelin (ET) decreased iNOS expression and nitrite accumulation induced by TNF-α/IL-1β. The inhibitory effect of ET on TNF-α/IL-1β-stimulated iNOS expression appears to be mediated by ETB receptors, because (1) both ET-1 and ET-3 inhibited the effects of TNF-α/IL-1β on iNOS expression and nitrite accumulation, (2) a selective ETB receptor agonist, Suc-[Glu9,Ala11,15]-ET-1 (8–21) (IRL1620), decreased the effects of TNF-α/IL-1β, and (3) a selective ETB receptor antagonist, N-cis -2,6-dimethylpiperidinocarbonyl- l -γ-methylleucyl- d -1-methoxycarbonyltryptophanyl- d -norleucine, abolished the inhibitory effects of ETs and IRL1620. Incubation of glial cells with lipopolysaccharide (LPS) caused an increase in iNOS expression. Simultaneous addition of ET-3 decreased the effects of LPS (10 and 100 ng/ml) on iNOS expression. Furthermore, cyclic AMP-elevating agents (dibutyryl cyclic AMP and forskolin) inhibited TNF-α/IL-1β-induced and LPS-induced iNOS expression and nitrite accumulation. These findings suggest that ETs can decrease TNF-α/IL-1β-induced and LPS-induced iNOS expression via ETB receptors and that cyclic AMP may be involved in this process.  相似文献   

6.
It was reported that human chymase cleaves big endothelins (ETs) at the Tyr31-Gly32 bond and produces 31-amino acid ETs(1-31). In this study, we investigated the effect of ET-1(1-31) on p38 mitogen-activated protein kinase (p38-MAPK) activity in human mesangial cells (HMCs). By measuring the kinase activity, we demonstrated that ET-1 (1-31) activated the p38-MAPK dose-dependently (10(-9) M to 10(-7) M), which was inhibited by SB203580. The p38-MAPK activation induced by ET-1(1-31) peaked at 10 minutes. BQ123 almost abolished ET-1(1-31)-induced p38-MAPK activation, whereas BQ788 failed to inhibit it. These findings suggest that the stimulatory effect of ET-1(1-31) on p38-MAPK activation is mediated through ET(A) or ET(A)-like receptor. In conclusion, ET-1(1-31) induced increase in p38-MAPK activation in cultured HMCs.  相似文献   

7.
Human chymase produces a novel endothelin-1 with 31 amino-acid length ?ET-1(1-31)?, which is longer than conventional ET-1, ?ET-1(1-21)?. The aim of our study was to investigate the role of ET-1(1-31) on porcine coronary vascular smooth muscle cell (VSMC). Although the increase in [Ca(2+)](i) by ET-1(1-31) was 10 times weaker than that of ET-1(1-21), ET-1(1-31) showed equivalent potency in VSMC proliferation, c-fos/c-myc mRNA expression and cell cycle analysis with ET-1(1-21). ET-1(1-31) significantly induced expression of cyclin D1 but not those of cyclin D2 or D3. These effects were specifically inhibited by BQ485, an ET(A) receptor antagonist, although that of ET-1(1-21) was not specific to BQ485, suggesting different receptor specificity from ET-1(1-21). These results indicate that ET-1(1-31) also can involve a VSMC proliferation process such as atherosclerosis, although it has weaker vasoconstricting potency and different receptor subtypes on VSMC from those of ET-1(1-21).  相似文献   

8.
9.
Cyclooxygenase (COX)-1- and COX-2-derived prostaglandins are implicated in the development and progression of several malignancies. We have recently demonstrated that treatment of ovarian carcinoma cells with endothelin-1 (ET-1) induces expression of both COX-1 and COX-2, which contributes to vascular endothelial growth factor (VEGF) production. In this study, we show that in HEY and OVCA 433 ovarian carcinoma cells, ET-1, through the binding with ETA receptor (ETAR), induces prostaglandin E2 (PGE2) production, as the more represented PG types, and increases the expression of PGE2 receptor type 2 (EP2) and type 4 (EP4). The use of pharmacological EP agonists and antagonists indicates that ET-1 and PGE2 stimulate VEGF production principally through EP2 and EP4 receptors. At the mechanistic level, we prove that the induction of PGE2 and VEGF by ET-1 involves Src-mediated epidermal growth factor receptor transactivation. Finally, we demonstrate that ETAR-mediated activation of PGE2-dependent signaling participates in the regulation of the invasive behavior of ovarian carcinoma cells by activating tumor-associated matrix metalloproteinase. These results implicate EP2 and EP4 receptors in the induction of VEGF expression and cell invasiveness by ET-1 and provide a mechanism by which ETAR/ET-1 can promote and interact with PGE2-dependent machinery to amplify its proangiogenic and invasive phenotype in ovarian carcinoma cells. Pharmacological blockade of ETAR can therefore represent an additional strategy to control PGE2 signaling, which has been associated with ovarian carcinoma progression.  相似文献   

10.
Insulin is known to cause an increase in endothelin-1 (ET-1) receptors in vascular smooth muscle cells (SMCs), but the effect of insulin-like growth factor 1 (IGF-1) on ET-1 receptor expression is not known. We therefore carried out the present study to determine the effect of IGF-1 on the binding of ET-1 to, and ET type A receptor (ETAR) expression and ET-1-induced 3H-thymidine incorporation in, vascular SMCs. In serum-free medium, IGF-1 treatment increased the binding of 125I-ET-1 to SMC cell surface ET receptors from a specific binding of 20.1%+/-3.1% per mg of protein in control cells to 45.1%+/-8.6% per mg of protein in cells treated with IGF-1 (10 nM). The effect of IGF-1 was dose-related, with a significant effect (1.4-fold) being seen at 1 nM. The minimal time for IGF-1 treatment to be effective was 30 min and the maximal effect was reached at 6 h. Immunoblotting analysis showed that ETAR expression in IGF-1-treated cells was increased by 1.7-fold compared to controls. Levels of ETAR mRNA measured by the RT-PCR method and Northern blotting were also increased by 2-fold in IGF-1-treated SMCs. These effects of IGF-1 were abolished by cycloheximide or genistein. Finally, ET-1-stimulated thymidine uptake and cell proliferation were enhanced by IGF-1 treatment, with a maximal increase of 3.2-fold compared to controls. In conclusion, in vascular SMCs, IGF-1 increases the expression of the ET-1 receptor in a dose- and time-related manner. This effect is associated with increased thymidine uptake and involves tyrosine kinase activation and new protein synthesis. These findings support the role of IGF-1 in the development of atherosclerotic, hypertensive, and diabetic vascular complications.  相似文献   

11.
Eosinophils are circulating granulocytes that have pleiotropic effects in response to inflammatory signals in the body. In response to allergens or pathogens, exposure eosinophils are recruited in various organs that execute pathological immune responses. IL-5 plays a key role in the differentiation, development, and survival of eosinophils. Eosinophils are involved in a variety of allergic diseases including asthma, dermatitis and various gastrointestinal disorders (EGID). IL-5 signal transduction involves JAK-STAT-p38MAPK-NFκB activation and executes extracellular matrix remodeling, EMT transition and immune responses in allergic diseases. IL-18 is a classical cytokine also involved in immune responses and has a critical role in inflammasome pathway. We recently identified the IL-18 role in the generation, transformation, and maturation of (CD101+CD274+) pathogenic eosinophils. In, addition, several other cytokines like IL-2, IL-4, IL-13, IL-21, and IL-33 also contribute in advancing eosinophils associated immune responses in innate and adaptive immunity. This review discusses with a major focus (1) Eosinophils and its constituents, (2) Role of IL-5 and IL-18 in eosinophils development, transformation, maturation, signal transduction of IL-5 and IL-18, (3) The role of eosinophils in allergic disorders and (4) The role of several other associated cytokines in promoting eosinophils mediated allergic diseases.  相似文献   

12.
Wong CK  Leung KM  Qiu HN  Chow JY  Choi AO  Lam CW 《PloS one》2012,7(1):e29815

Background

IL-31 is a pruritogenic cytokine, and IL-33 is an alarmin for damaging inflammation. They together relate to the pathogenesis of atopic dermatitis (AD). Eosinophil infiltration into the inner dermal compartment is a predominant pathological feature of AD. We herein investigated the in vitro inflammatory effects of IL-31 and IL-33 on the activation of human eosinophils and dermal fibroblasts.

Methodology/Principal Findings

Receptors, adhesion molecules and signaling molecules were assessed by Western blot or flow cytometry. Chemokines and cytokine were quantitated by multiplex assay. Functional IL-31 receptor component IL-31RA, OSMR-β and IL-33 receptor component ST2 were constitutively expressed on the surface of eosinophils. Co-culture of eosinophils and fibroblasts significantly induced pro-inflammatory cytokine IL-6 and AD-related chemokines CXCL1, CXCL10, CCL2 and CCL5. Such inductions were further enhanced with IL-31 and IL-33 stimulation. IL-31 and IL-33 could significantly provoke the release of CXCL8 from eosinophils and fibroblasts, respectively, which was further enhanced upon co-culture. In co-culture, eosinophils and fibroblasts were the main source for the release of CCL5, and IL-6, CXCL1, CXCL8, CXCL10 and CCL2, respectively. Direct interaction between eosinophils and fibroblasts was required for CXCL1, CXCL10, CXCL8 and CCL5 release. Cell surface expression of intercellular adhesion molecule-1 on eosinophils and fibroblasts was up-regulated in co-culture upon IL-31 and IL-33 stimulation. The interaction between eosinophils and fibroblasts under IL-31 and IL-33 stimulation differentially activated extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, nuclear factor-κB and phosphatidylinositol 3-kinase–Akt pathways. Using specific signaling molecule inhibitors, the differential induction of IL-31 and IL-33-mediated release of cytokines and chemokines such as IL-6 and CXCL8 from co-culture should be related to their distinct activation profile of intracellular signaling pathways.

Conclusions/Significance

The above findings suggest a crucial immunopathological role of IL-31 and IL-33 in AD through the activation of eosinophils-fibroblasts interaction via differential intracellular signaling mechanisms.  相似文献   

13.
14.
Adipose tissue-derived mesenchymal stromal cells (ASCs) hold the promise of achieving successful immunotherapeutic results due to their ability to regulate different T-cell fate. ASCs also show significant adaptability to environmental stresses by modulating their immunologic profile. Cell-based therapy for inflammatory diseases requires a detailed understanding of the molecular relation between ASCs and Th17 lymphocytes taking into account the influence of inflammation and cell ratio on such interaction. Accordingly, a dose-dependent increase in Th17 generation was only observed in high MSC:T-cell ratio with no significant impact of inflammatory priming. IL-23 receptor (IL-23R) expression by T cells was not modulated by ASCs when compared to levels in activated T cells, while ROR-γt expression was significantly increased reaching a maximum in high (1:5) unprimed ASC:T-cell ratio. Finally, multiplex immunoassay showed substantial changes in the secretory profile of 15 cytokines involved in the Th17 immune response (IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40, and TNF-α), which was modulated by both cell ratio and inflammatory priming. These findings suggest that Th17 lymphocyte pathway is significantly modulated by ASCs that may lead to immunological changes. Therefore, future ASC-based immunotherapy should take into account the complex and detailed molecular interactions that depend on several factors including inflammatory priming and cell ratio.  相似文献   

15.
All members of the mammalian endothelin family of peptides exert significant effects on prolactin and luteinizing hormone release from dispersed anterior pituitary cells in vitro. The rank order of potency for the prolactin inhibiting effects of the endothelins is ET-1 = ET-2 much less than ET-3. This suggests an involvement of the ET-A receptor subtype. The selective ET-A receptor antagonist BQ-123 antagonized the effects of the ETs in a competitive fashion with pA2 values of 6.1 (ET-1), 5.7 (ET-2) and 6.4 (ET-3), when added simultaneously with the ETs. This suggests the involvement of the ET-A receptor subtype in the actions of the ETs within the anterior pituitary gland.  相似文献   

16.
Eosinophils express functional IL-13 in eosinophilic inflammatory diseases   总被引:30,自引:0,他引:30  
IL-13 is an immunoregulatory and effector cytokine in allergic diseases such as bronchial asthma. A variety of immune and non-immune cells are known as IL-13 producers. In this study we investigated whether and under what conditions human eosinophils generate IL-13. Freshly isolated highly purified peripheral blood eosinophils from patients with several eosinophilic inflammatory diseases and from normal control individuals were investigated. We observed that blood eosinophils from patients suffering from bronchial asthma, atopic dermatitis, parasitic infections, hypereosinophilic syndrome, and idiopathic eosinophilic esophagitis expressed IL-13, as assessed by ELISA, ELISPOT assay, flow cytometry, and immunocytochemistry. By using nasal polyp tissues and immunohistochemistry, we demonstrated IL-13 expression in eosinophils under in vivo conditions. In contrast, blood eosinophils from control individuals as well as blood neutrophils from both eosinophilic and control patients did not produce detectable IL-13 levels. However, when blood eosinophils from control individuals were stimulated with GM-CSF or IL-5 in vitro, they generated IL-13 mRNA and protein, suggesting that IL-13 expression by eosinophils under inflammatory conditions is a cytokine-driven process. Stimulation of blood eosinophils containing IL-13 by eotaxin resulted in a rapid release of this cytokine. Eosinophil-derived IL-13 was functional, as it increased the surface expression of the low affinity IgE receptor (CD23) on purified B cells. In conclusion, human eosinophils are able to produce and release functional IL-13 in eosinophilic inflammatory responses.  相似文献   

17.
To clarify the action of a novel endothelin-1 with 31 amino acids, ET-1 (1-31), on fetal circulation, its vasoconstrictive activity on human umbilical and uterine arteries was investigated in comparison with that of a conventional ET-1 (1-21). UFER micro-easy magnus was used for determination of vasoconstriction. The contraction of umbilical artery by KCl was significantly weaker than that of the uterine artery. In ETs, constriction by KCl was set as control, and the rate of constriction of uterine and umbilical arteries was used for comparison. The constriction of human uterine artery induced by ET-1 (1-31) was also significantly weaker than that by ET-1 (1-21). On the contrary, ET-1 (1-31) was a potent constrictor on the umbilical artery equally to ET-1 (1-21). The present study is the first to demonstrate that ET-1 (1-31) has a contractile activity on human vessels. Furthermore, the regulatory mechanism on constriction of umbilical artery is different from that observed in a systemic vessel, indicating a particularly important role of ET-1 (1-31) in fetal circulation.  相似文献   

18.
Our recent data suggested that tissue eosinophils may be relatively insensitive to anti-IL-5 treatment. We examined cross-regulation and functional consequences of modulation of eosinophil cytokine receptor expression by IL-3, IL-5 GM-CSF, and eotaxin. Incubation of eosinophils with IL-3, IL-5, or GM-CSF led to reduced expression of IL-5R alpha, which was sustained for up to 5 days. Eosinophils incubated with IL-5 or IL-3 showed diminished respiratory burst and mitogen-activated protein kinase kinase phosphorylation in response to further IL-5 stimulation. In contrast to these findings, eosinophil expression of IL-3R alpha was increased by IL-3, IL-5, and GM-CSF, whereas GM-CSF receptor alpha was down-regulated by GM-CSF, but was not affected by IL-3 or IL-5. CCR3 expression was down-regulated by IL-3 and was transiently reduced by IL-5 and GM-CSF, but rapidly returned toward baseline. Eotaxin had no effect on receptor expression for IL-3, IL-5, or GM-CSF. Up-regulation of IL-3R alpha by cytokines was prevented by a phosphoinositol 3-kinase inhibitor, whereas this and other signaling inhibitors had no effect on IL-5R alpha down-regulation. These data suggest dynamic and differential regulation of eosinophil receptors for IL-3, IL-5, and GM-CSF by the cytokine ligands. Since these cytokines are thought to be involved in eosinophil development and mobilization from the bone marrow and are present at sites of allergic inflammation, tissue eosinophils may have reduced IL-5R expression and responsiveness, and this may explain the disappointing effect of anti-IL-5 therapy in reducing airway eosinophilia in asthma.  相似文献   

19.
IL-17RA is a shared receptor subunit for several cytokines of the IL-17 family, including IL-17A, IL-17C, IL-17E (also called IL-25) and IL-17F. It has been shown that mice deficient in IL-17RA are more susceptible to sepsis than wild-type mice, suggesting that IL-17RA is important for host defense against sepsis. However, it is unclear which ligands for IL-17RA, such as IL-17A, IL-17C, IL-17E/IL-25 and/or IL-17F, are involved in the pathogenesis of sepsis. Therefore, we examined IL-17A, IL-17E/IL-25 and IL-17F for possible involvement in LPS-induced endotoxin shock. IL-17A-deficient mice, but not IL-25- or IL-17F-deficient mice, were resistant to LPS-induced endotoxin shock, as compared with wild-type mice. Nevertheless, studies using IL-6-deficient, IL-21Rα-deficient and Rag-2-deficient mice, revealed that neither IL-6 and IL-21, both of which are important for Th17 cell differentiation, nor Th17 cells were essential for the development of LPS-induced endotoxin shock, suggesting that IL-17A-producing cells other than Th17 cells were important in the setting. In this connection, IL-17A was produced by macrophages, DCs and eosinophils after LPS injection. Taken together, these findings indicate that IL-17A, but not IL-17F or IL-25, is crucial for LPS-induced endotoxin shock. In addition, macrophages, DCs and eosinophils, but not Th17 cells or γδ T cells, may be sources of IL-17A during LPS-induced endotoxin shock.  相似文献   

20.
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号