首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Feng  Juanjuan  Rao  Mingjin  Wang  Man  Liang  Lin  Chen  Zhi  Pang  Xiufeng  Lu  Weiqiang  Sun  Zhenliang 《中国科学:生命科学英文版》2019,62(10):1409-1412
正Dear Editor,Pancreatic cancer (PCa) is a high-grade gastrointestinal malignancy more commonly occurring in elderly populations with lower than 5% overall 5-year survival rate (Hidalgo, 2010). PCa responds poorly to most chemotherapeutic agents, and therefore it is imperative to develop novel therapeutic agents that have anti-cancer activities against PCa.  相似文献   

2.
Gemcitabine is the standard-of-care for chemotherapy in patients with pancreatic adenocarcinoma and it can directly incorporate into DNA or inhibit ribonucleotide reductase to prevent DNA replication and, thus, tumor cell growth. Most pancreatic tumors, however, develop resistance to gemcitabine. Polo-like kinase 1 (Plk1), a critical regulator in many cell cycle events, is significantly elevated in human pancreatic cancer. In this study, we show that Plk1 is required for the G1/S transition and that inhibition of Plk1 significantly reduces the DNA synthesis rate in human pancreatic cancer cells. Furthermore, the combined effect of a specific Plk1 inhibitor GSK461364A with gemcitabine was examined. We show that inhibition of Plk1 significantly potentiates the anti-neoplastic activity of gemcitabine in both cultured pancreatic cancer cells and Panc1-derived orthotopic pancreatic cancer xenograft tumors. Overall, our study demonstrates that co-targeting Plk1 can significantly enhance the efficacy of gemcitabine, offering a promising new therapeutic option for the treatment of gemcitabine-resistant human pancreatic cancer.  相似文献   

3.
4.
Metastasis is the main reason for high recurrence and poor survival of hepatocellular carcinoma(HCC).The molecular mechanism underlying HCC metastasis remains unclear.In this study,we found that argininosuccinate synthase 1(ASS1)expression was significantly decreased and down-regulation of ASS1 was closely correlated with poor prognosis in HCC patients.DNA methylation led to the down-regulation of ASS1 in HCC.Stable silencing of ASS1 promoted migration and invasion of HCC cells,whereas overexpression of ASS1-inhibited metastasis of HCC cells in vivo and in vitro.We also revealed that ASS1-knockdown increased the phosphorylation level of S727STAT3,which contributed to HCC metastasis by up-regulation of inhibitor of differentiation 1(ID1).These findings indicate that ASS1 inhibits HCC metastasis and may serve as a target for HCC diagnosis and treatment.  相似文献   

5.
Colorectal cancer (CRC) accounts for about 10% of all annually diagnosed cancers and cancer-related deaths worldwide. STAT3 plays a vital role in the occurrence and development of tumours. Gracillin has shown a significant antitumour activity in tumours, but its mechanism remains unknown. The human CRC cell lines HCT116, RKO, and SW480 and immunodeficient mice were used as models to study the effects of gracillin on cell proliferation, migration and apoptosis. These were evaluated by cell viability, colony formation, wound-healing migration and cell apoptosis assays. Luciferase reporter assay, and immunostaining and western blot analyses were used to explore the specific mechanism through which gracillin exerts its effects. Gracillin significantly reduces viability and migration and stimulates apoptosis in human CRC cells. It also significantly inhibits tumour growth with no apparent physiological toxicity in animal model experiments. Moreover, gracillin is found to inhibit STAT3 phosphorylation and STAT3 target gene products. In addition, gracillin inhibits IL6-induced nuclear translocation of P-STAT3. Gracillin shows potent efficacy against CRC by inhibiting the STAT3 pathway. It should be further explored as a unique STAT3 inhibitor for the treatment of CRC.  相似文献   

6.
7.
Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1Bright CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b+/Gr1+/Ly6G?/Ly6Chi) significantly increase the frequency of ALDH1Bright CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14+ peripheral blood monocytes into Mo-MDSC (CD14+/HLA-DRlow/?) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1Bright CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1Bright CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1Bright CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC.  相似文献   

8.
Gastric cancer (GC) is one of the most common cancers. Resistance to 5-fluorouracil (5-Fu)-based chemotherapy is a major cause of treatment failure followed by the poor prognosis of patients. In GC, it was reported that human differentiated embryonic chondrocyte-expressed gene 2 (DEC2), suppressed tumor proliferation and metastasis, but the effect of DEC2 on chemosensitivity of GC cells was unknown. In our study, we found that DEC2 can obviously increase the sensibility of GC cells to 5-Fu by promoting 5-Fu-induced apoptosis. DEC2 overexpression is significantly associated with decreased phosphorylation of STAT5A (P-STAT5A). More importantly, negative correlations between DEC2 with P-STAT5A expression were observed in tissue sections from GC patients. GC patients with low expression levels of DEC2 and high expression levels of P-STAT5A showed a poor prognosis. Furthermore, enhanced chemosensitivity mediated by DEC2 can be reversed by STAT5A which confer GC cells resistance to apoptosis induced by 5-Fu. Together, our results suggest that through inhibiting activation of STAT5A, DEC2 enhances 5-Fu-induced apoptosis and suppression of proliferation in GC cells. These findings will provide new insight for identifying potential targets that can be used to sensitize GC cells to chemotherapy.  相似文献   

9.
10.
11.
Despite many advances in oncology, almost all patients with pancreatic cancer (PC) die of the disease. Molecularly targeted agents are offering hope for their potential role in helping translate the improved activity of combination chemotherapy into improved survival. Heat shock protein 27 (Hsp27) is a chaperone implicated in several pathological processes such as cancer. Further, Hsp27 expression becomes highly upregulated in cancer cells after chemotherapy. Recently, a modified antisense oligonucleotide that is complementary to Hsp27 (OGX-427) has been developed, which inhibits Hsp27 expression and enhances drug efficacy in cancer xenograft models. Phase II clinical trials using OGX-427 in different cancers like breast, ovarian, bladder, prostate and lung are in progress in the United States and Canada. In this study, we demonstrate using TMA of 181 patients that Hsp27 expression and phosphorylation levels increase in moderately differentiated tumors to become uniformly highly expressed in metastatic samples. Using MiaPaCa-2 cells grown both in vitro and xenografted in mice, we demonstrate that OGX-427 inhibits proliferation, induces apoptosis and also enhances gemcitabine chemosensitivity via a mechanism involving the eukaryotic translation initiation factor 4E. Collectively, these findings suggest that the combination of Hsp27 knockdown with OGX-427 and chemotherapeutic agents such as gemcitabine can be a novel strategy to inhibit the progression of pancreas cancer.  相似文献   

12.
13.
14.
15.
16.
Ovarian cancer is one of the deadliest gynecologic malignancies and is the seventh leading cause of mortalities and morbidities globally. Although there are various therapeutic strategies, a major challenge for scientific community is to come up with effective strategy to treat ovarian cancer. Tilianin, a polyphenol flavonoid is well known for its extensive biological actions like cardioprotective, neuroprotective, anti-oxidant, anti-inflammatory, anti-diabetic and anti-tumor properties. The current study is designed to investigate the anti-cancer action of Tilianin in ovarian cancer (PA-1) cells. The findings of this study revealed that Tilianin treatment results in significant and concentration dependent decrease in cell viability. The growth inhibiting action of Tilianin is associated with apoptosis which was confirmed by DAPI and AO/EtBr staining. The Tilianin-triggered apoptosis in PA-1 cells was correlated with elevated generation of ROS, loss of mitochondrial membrane potential, alterations in pro-apoptotic (upregulated mRNA expression of Bax) and anti-apoptotic (downregulated mRNA expression of Bcl2) factors and activation of caspase-8, −9 and −3. Cell cycle analysis revealed that Tilianin treatment prevented G1/S transition through reduced mRNA expression of cyclin D1. Additionally, the findings of this study also showed Tilianin inhibited JAK2/STAT3 signaling (downregulated expression of pJAK2, JAK2, pSTAT3, and STAT3) with no change in mRNA expression level of ERK indicating its non-involvement in the apoptotic and/or growth inhibition of ovarian cancer cells. In conclusion, the findings of this exploration provided clear evidence of anti-cancer effects of Tilianin in PA-1 cells through its anti-proliferative action, ability to induce apoptosis both through extrinsic and intrinsic pathways, cell cycle (G1/S) arrest and JAK2/STAT3 signaling inhibition.  相似文献   

17.
Increasing attention of plant derived therapeutic agents against cancer, investigating the anti-proliferative efficiency of plant derived chemicals have achieved increasing momentum for the design of anticancer drug. Punicalagin, dietary phytochemical altered the various cell signal transduction pathways associated with cell apoptosis and proliferation. This investigation was intended to examine the efficiency of punicalagin lying on cell viability so as to examine the molecular based punicalagin mechanism stimulated apoptosis via exploring the expression of Bcl-2 family proteins, and caspases also the cell cycle regulatory proteins p53 and NF-κB signaling in human cervical cancer cells. We also analyzed the morphological characteristic changes through mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, TUNEL assay, AO/EtBr analysis in cervical cancer cells. Our findings demonstrated that punicalagin repressed the viability of cervical cancer cells in a dosereliant mode via stimulating mitochondrial mediated apoptosis. Moreover, our this study demonstrated that punicalagin blocked cervical cancer cell proliferation and stimulated cell apoptosis by suppressing NF-kappa B activity. Hence our study suggested that punicalagin exhibits opposing actions on NF-kappa B signaling networks to block cancer cell progression acts as a classical candidate for anticancer drug designing.  相似文献   

18.
Gastric cancer is one of the most common malignancies, and radiation resistance is one of the key obstacles in gastric cancer treatment. In this study, we demonstrate that “genes associated retinoid–IFN induced mortality-19” (GRIM-19) expression was lower in patients with radiotherapy-resistant tumors compared to patients with radiotherapy-sensitive tumors. In order to further investigate the effects of GRIM-19 expression on the radiation response in gastric cancer cells, we established BGC-803 clones stably expressing exogenous GRIM-19. We found that the percentage of apoptotic cells was higher in cells expressing GRIM-19 than untransfected cells post-radiation treatment. Furthermore, caspase-3, -8, and -9 activity was significantly increased in GRIM-19-expressing cells compared to untransfected cells after radiation. Finally, we demonstrate that expression of GRIM-19 in BGC-803 cells suppresses accumulation of STAT3. Collectively, these data show that GRIM-19 expression sensitizes BGC-803 cells to radiation, and this is likely due to suppression of STAT3 accumulation. In summary, our results indicate that GRIM-19 expression might be a useful therapy to enhance apoptosis in gastric cancer cells in response to radiation treatment.  相似文献   

19.
20.
Evaluating anti-oxidant potential of Ganoderic acid A in STAT 3 pathway in Prostate cancer. Molecular docking and ADMET activities of different isoforms of ganoderic acid on STAT 3 pathway were performed by Maestro 9.6 (Schrödinger Inc). The ganoderic acid A is best-docked among isoforms which analyses the expression level of antioxidant and STAT 3 pathway in PC-3 cells. The receptor-based molecular docking reveals the best binding interaction of SH2 domain of STAT3 and ganoderic acid A with GScore (?6.134), kcal/mol, Lipophilic EvdW (?1.83), Electro (?1.1), Glide emodel (?31.857), H bond (1.98), MM-GBSA (?69.555). The molecular docking QikProp analyzed the absorption, distribution, metabolism, excretion, and toxicity (ADME/T). The ganoderic acid A is best-docked among isoforms which downregulates the expression of STAT 3 in PC-3 cells. Moreover, ganoderic acid A inhibits proliferation, viability, ROS, DPPH, and analyzed the expression of SOD1, SOD2, and SOD3 by Real time PCR in a PC-3 cell in a dose-dependent manner. Molecular docking revealed the mechanistic binding of Ganoderic acid A in STAT3 signaling, which inhibits the proliferation, viability, and ROS in PC-3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号