共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclic AMP controls the plasma membrane H+-ATPase activity from Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
The thermosensitive G1-arrested cdc35-10 mutant from Saccharomyces cerevisiae, defective in adenylate cyclase activity, was shifted to restrictive temperature. After 1 h incubation at this temperature, the plasma membrane H+-ATPase activity of cdc35-10 was reduced to 50%, whereas that in mitochondria doubled. Similar data were obtained with cdc25, another thermosensitive G1-arrested mutant modified in the cAMP pathway. In contrast, the ATPase activities of the G1-arrested mutant cdc19, defective in pyruvate kinase, were not affected after 2 h incubation at restrictive temperature. In the double mutants cdc35-10 cas1 and cdc25 cas1, addition of extracellular cAMP prevented the modifications of ATPase activities observed in the single mutants cdc35-10 and cdc25. These data indicate that cAMP acts as a positive effector on the H+-ATPase activity of plasma membranes and as a negative effector on that of mitochondria. 相似文献
2.
Activation of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae by addition of hydrogen peroxide. 总被引:1,自引:0,他引:1
Addition of hydrogen peroxide (greater than 10 mM) to aerated derepressed cells of S. cerevisiae in the absence of substrate caused a boost of endogenous respiration and both intra- and extracellular acidification, without any significant change in cellular ATP level. Furthermore, a hyperpolarization of the plasma membrane was indicated by an enhanced accumulation of tetraphenylphosphonium in the cells. The extracellular pH attained was as low as 3.5. The acidification could be suspended by the H(+)-ATPase inhibitors diethylstilbestrol and dicyclohexylcarbodiimide and was, in general, associated with an opposite flux of K+. K+ also stimulated the H(+)-ATPase activity in the purified plasma membrane fraction. These results are consistent with the plasma membrane H(+)-ATPase being involved in the H+ extrusion induced by H2O2 in the absence of substrate. Extended exposure of cells to H2O2 led eventually to an arrest of both respiration and ion fluxes that could be again lifted by depolarizing the plasma membrane. Along with differences in the cellular NADH/NAD+ ratio and in the participation of organic acids, this makes the H2O2-induced acidification distinct from that induced by glucose. 相似文献
3.
Alexandra R. Fernandes Francisco P. Peixoto I. Sá-Correia 《Archives of microbiology》1998,171(1):6-12
Cells of Saccharomyces cerevisiae exibited a more active plasma membrane H+-ATPase during growth in media supplemented with CuSO4 concentrations equal to or below 1 mM than did cells cultivated in the absence of copper stress. Maximal specific activities were found with 0.5 mM CuSO4. ATPase activity declined when cells were grown with higher concentrations up to 1.5 mM (the maximal concentration that allowed growth), probably due to severe disorganization of plasma membrane. Cu2+-induced maximal activation was reflected in an increase of V max (approximately threefold) and in the slight decrease of the K m for MgATP (from 0.93 ± 0.13 to 0.65 ± 0.16 mM). The expression of the gene encoding the essential plasma membrane ATPase (PMA1) was reduced with a dose-dependent pattern in cells grown with inhibitory concentrations of copper, while the weakly expressed PMA2 gene promoter was moderately more efficient in cells cultivated under mild copper stress (1.5-fold maximal activation). ATPase was activated by copper despite the slightly lower content of ATPase protein in the plasma membrane of Cu2+-grown cells and the powerful inhibitory effect of Cu2+ in vitro. Received: 6 May 1998 / Accepted: 14 September 1998 相似文献
4.
A novel system for generating large interior positive membrane potentials in proteoliposomes was used to examine the effects of membrane voltage on reconstituted plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The membrane potential-generating system was dependent upon the lipophilic electron carrier tetracyanoquinodimethane, located within the bilayer, to mediate electron flow from vesicle entrapped ascorbate to external K3Fe(CN)6. Membrane potential formation was followed by the potential-dependent probe oxonol V and was found to rapidly reach a steady-state which lasted at least 90 s. A membrane potential of approximately 254 mV was determined under optimal conditions and ATP hydrolysis by wild-type H(+)-ATPase was inhibited from 34 to 46% under these conditions. In contrast, membrane potential had little effect on pma1-105 mutant enzyme suggesting that it is defective in electrogenic proton translocation. Applied membrane voltage was also found to alter the sensitivity of wild-type enzyme to vanadate at concentrations less than 50 microM. These data suggest a coupling between the charge-transfer and ATP hydrolysis domains and establish a solid basis for future probing of the electrogenic properties of the yeast H(+)-ATPase. 相似文献
5.
The addition of ammonium ions to Aspergillus niger cells originally growing on another nitrogen source resulted in rapid medium acidification. The addition of glucose or other fermentable sugars to the mycelium growing on glycerol did not have the same effect. The enzyme responsible for acidification seems to be plasma membrane H+-ATPase, which is most probably triggered by phosphorylation. Using specific activators and inhibitors, we tried to figure out which signalling pathway is involved in the process. No activation of H+-ATPase could be detected in the presence of diacylglycerol and other activators of protein kinase C, indicating that the stimulus is transmitted by another signalling chain. In the presence of inhibitors known to suppress the phosphatidyl-inositol signalling pathway, such as neomycin, compound 48/80 and calmidazolium, no increased H+-ATPase activity could be detected after the addition of ammonium ions. However, some tested inhibitors of the cAMP signalling pathway could not prevent activation of the enzyme by the stimulant. These results support the model in which ammonium-induced activation of proton extrusion in A. niger is mediated via the phosphatidyl-inositol signalling pathway, involving Ca2+/calmoduline-dependent protein kinase but not protein kinase C. 相似文献
6.
In the yeast Saccharomyces cerevisiae, plasma membrane H(+)-ATPase is activated by d-glucose. We found that in the absence of glucose, this enzyme forms a complex with acetylated tubulin. Acetylated tubulin usually displays hydrophilic properties, but behaves as a hydrophobic compound when complexed with H(+)-ATPase, and therefore partitions into a detergent phase. When cells were treated with glucose, the H(+)-ATPase-tubulin complex was disrupted, with two consequences, namely (a) the level of acetylated tubulin in the plasma membrane decreased as a function of glucose concentration and (b) the H(+)-ATPase activity increased as a function of glucose concentration, as measured by both ATP-hydrolyzing capacity and H(+)-pumping activity. The addition of 2-deoxy-d-glucose inhibited the above glucose-induced phenomena, suggesting the involvement of glucose transporters. Whereas total tubulin is distributed uniformly throughout the cell, acetylated tubulin is concentrated near the plasma membrane. Results from immunoprecipitation experiments using anti-(acetylated tubulin) and anti-(H(+)-ATPase) immunoglobulins indicated a physical interaction between H(+)-ATPase and acetylated tubulin in the membranes of glucose-starved cells. When cells were pretreated with 1 mm glucose, this interaction was disrupted. Double immunofluorescence, observed by confocal microscopy, indicated that H(+)-ATPase and acetylated tubulin partially colocalize at the periphery of glucose-starved cells, with predominance at the outer and inner sides of the membrane, respectively. Colocalization was not observed when cells were pretreated with 1 mm glucose, reinforcing the idea that glucose treatment produces dissociation of the H(+)-ATPase-tubulin complex. Biochemical experiments using isolated membranes from yeast and purified tubulin from rat brain demonstrated inhibition of H(+)-ATPase activity by acetylated tubulin and concomitant increase of the H(+)-ATP ase-tubulin complex. 相似文献
7.
The hydrophobic, photoactivatable probe TID [3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine] was used to label the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The H(+)-ATPase accounted for 43% of the total label associated with plasma membrane protein and incorporated 0.3 mol of [125I]TID per mol of 100 kDa polypeptide. The H(+)-ATPase was purified by octyl glucoside extraction and glycerol gradient centrifugation, and was cleaved by either cyanogen bromide digestion or limited tryptic proteolysis to isolate labeled fragments. Cyanogen bromide digestion resulted in numerous labeled fragments of mass less than 21 kDa. Seven fragments suitable for microsequence analysis were obtained by electrotransfer to poly(vinylidene difluoride) membranes. Five different regions of amino-acid sequence were identified, including fragments predicted to encompass both membrane-spanning and cytoplasmic protein structure domains. Most of the labeling of the cytoplasmic domain was concentrated in a region comprising amino acids 347 to 529. This catalytic region contains the site of phosphorylation and was previously suggested to be hydrophobic in character (Goffeau, A. and De Meis, L. (1990) J. Biol. 265, 15503-15505). Complementary labeling information was obtained from an analysis of limited tryptic fragments enriched for hydrophobic character. Six principal labeled fragments, of 29.6, 20.6, 16, 13.1, 11.4 and 9.7 kDa, were obtained. These fragments were found to comprise most of the putative transmembrane region and a portion of the cytoplasmic region that overlapped with the highly labeled active site-containing cyanogen bromide fragment. Overall, the extensive labeling of protein structure domains known to lie outside the bilayer suggests that [125I]TID labeling patterns cannot be unambiguously interpreted for the purpose of discerning membrane-embedded protein structure domains. It is proposed that caution should be applied in the interpretation of [125I]TID labeling patterns of the yeast plasma membrane H(+)-ATPase and that new and diverse approaches should be developed to provide a more definitive topology model. 相似文献
8.
9.
Trópia MJ Cardoso AS Tisi R Fietto LG Fietto JL Martegani E Castro IM Brandão RL 《Biochemical and biophysical research communications》2006,343(4):1234-1243
In this work, we show that glucose-induced activation of plasma membrane H(+)-ATPase from Saccharomyces cerevisiae is strongly dependent on calcium metabolism and that the glucose sensor Snf3p works in a parallel way with the G protein Gpa2p in the control of the pathway. The role of Snf3p is played by the Snf3p C-terminal tail, since in a strain with the deletion of the SNF3 gene, but also expressing a chimera protein formed by Hxt1p (a glucose transporter) and the Snf3p C-terminal tail, a normal glucose-activation process can be observed. We present evidences indicating that Snf3p would be the sensor for the internal signal (phosphorylated sugars) of this pathway that would connect calcium signaling and activation of the plasma membrane ATPase. We also show that Snf3p could be involved in the control of Pmc1p activity that would regulate the calcium availability in the cytosol. 相似文献
10.
Characterization of the plasma membrane Mg2+-ATPase from the yeast, Saccharomyces cerevisiae. 总被引:8,自引:0,他引:8
G R Willsky 《The Journal of biological chemistry》1979,254(9):3326-3332
The plasma membrane of Saccharomyces cerevisiae has a Mg2+-dependent ATPase which is distinct from the mitochondrial Mg2+-ATPase and at the pH optimum of 5.5 has a Km for ATP of 1.7 mM and a Vmax of 0.42 mumol of ATP hydrolyzed/mg/min. At least three protein components of the crude membrane (Mr = 210,000, 160,000 and 115,000) are labeled with [gamma"32P]ATP at pH 5.5. These phosphoproteins form rapidly in the presence of Mg2+, rapidly turn over the bound phosphate when unlabeled ATP is added, and dephosphorylate after incubation in the presence of hydroxylamine. Vanadate, an inhibitor of the Mg2+-ATPase activity, blocks the phosphorylation of the 210,000- and 115,000-dalton proteins. At pH 7.0, only the 210,000- and 160,000-dalton proteins are phosphorylated. While these three phosphorylated intermediates have not been unambiguously identified as components of the Mg2+-ATPase, the finding of such phosphorylated components in association with that activity implies that this enzyme differs in mechanism from the mitochondrial proton pump and that it is similar in mechanism to the metal ion pumps ((Na+-K+)-ATPase and Ca2+-ATPase) of the mammalian plasma membrane. 相似文献
11.
The plasma membrane H+-ATPase activity was determined under various growth conditions using the yeastsSaccharomyces cerevisiae andSchizosaccharomyces pombe. Under early batch-growth conditions in a rich medium, the budding yeastS. cerevisiae ATPase specific activity increased 2-to 3-fold during exponential growth. During late exponential growth, a peak of ATPase
activity, followed by a sudden decrease, was observed and termed “growth-arrest control”. The growth arrest phenomenon ofS. cerevisiae could not be related to the acidification of the culture medium or to glucose exhaustion in the medium or to variation of
glucose activation of the H+-ATPase. Addition of ammonium to a proline minimum medium also stimulated transiently the ATPase activity ofS. cerevisiae. Specific activity of the fission yeastS. pombe ATPase did not show a similar profile and steadily increased to reach a plateau in stationary growth. Under synchronous mitotic
growth conditions, the ATPase activity ofS. cerevisiae increased during the cell division cycle according to the “peak” type cycle, while that ofS. pombe was of the “step” type. 相似文献
12.
Miranda M Allen KE Pardo JP Slayman CW 《The Journal of biological chemistry》2001,276(25):22485-22490
In P(2)-type ATPases, a stalk region connects the cytoplasmic part of the molecule, which binds and hydrolyzes ATP, to the membrane-embedded part through which cations are pumped. The present study has used cysteine scanning mutagenesis to examine structure-function relationships within stalk segment 5 (S5) of the yeast plasma-membrane H(+)-ATPase. Of 29 Cys mutants that were made and examined, two (G670C and R682C) were blocked in biogenesis, presumably due to protein misfolding. In addition, one mutant (S681C) had very low ATPase activity, and another (F685C) displayed a 40-fold decrease in sensitivity to orthovanadate, reflecting a shift in equilibrium from the E(2) conformational state toward E(1). By far the most striking group of mutants (F666C, L671C, I674C, A677C, I684C, R687C, and Y689C) were constitutively activated even in the absence of glucose, with rates of ATP hydrolysis and kinetic properties normally seen only in glucose-metabolizing cells. Previous work has suggested that activation of the wild-type H(+)-ATPase results from kinase-mediated phosphorylation in the auto-inhibitory C-terminal region of the 100-kDa polypeptide. The seven residues identified in the present study are located on one face of the S5 alpha-helix, consistent with the idea that mutations along this face serve to release the auto-inhibition. 相似文献
13.
Plasma membrane ATPase activity of Saccharomyces cerevisiae IGC 3507III grown in the presence of the lipophilic acid octanoic acid [4-50 mg l-1 (0.03-0.35 mM), pH 4.0] was 1.5-fold higher than that in cells grown in its absence. The Km for ATP, the pH profile and the sensitivity to orthovanadate of the basal and the activated forms of the membrane ATPase were identical. This activation was closely associated with a decrease in the biomass yield and an increase in the ethanol yield, and was rapidly reversed in vivo after removal of the acid. However, the activated level was preserved when membranes were extracted and subjected to manipulations which eliminated or decreased octanoic acid incorporation in the plasma membrane. The activity of the basal plasma membrane ATPase in the total membrane fraction was slightly increased by incubation at pH 6.5 with octanoic acid at 100 mg l-1 or less (2.4 mg acid form plus 97.6 mg octanoate ion l-1). However, destruction of the permeability barrier between the enzyme and its substrate could not explain the in vivo activation. A role for plasma membrane ATPase activation in the regulation of the intracellular pH (pHi) of cells grown with octanoic acid was not proven. 相似文献
14.
Mutants of Saccharomyces cerevisiae carrying defined lesions in the mitochondrial aap1 gene, coding for membrane subunit 8 of the H+-ATPase, have been investigated to examine the consequence of the mutations on the function and assembly of the enzyme complex. These include three mit- mutants, which cannot grow by oxidative metabolism due to their inability to synthesize full-length subunit 8, and three partial revertants of one of the mutants. The mutations in these strains have been previously characterized by DNA sequencing. The use of a monoclonal antibody to the beta subunit of the H+-ATPase as a probe of assembly defect revealed that the presence of subunit 8 is essential for the assembly of subunit 6 to the enzyme complex. Mitochondria isolated from the mit- mutants have negligible [32Pi]ATP exchange activity and they exhibited ATPase activity which is not sensitive to inhibition by oligomycin, indicating a defective membrane F0 sector. Normal assembly of subunit 8 (and subunit 6) was observed in the revertant strains, despite 8-9 amino-acid substitutions in the membrane-spanning region of the H+-ATPase subunit 8 in two of the strains. The assembled complex, however, exhibited reduced [32Pi]ATP exchange activity and low sensitivity to oligomycin, indicating that the product of the aap1 gene is a functional subunit of the mitochondrial H+-ATPase. 相似文献
15.
16.
Large cytoplasmic domain (LCD) plasma membrane H+ -ATPase from S. cerevisiae was expressed as two fusion polypeptides in E. coli: a DNA sequence coding for Leu353-Ileu674 (LCDh), comprising both nucleotide (N) and phosphorylation (P) domains, and a DNA sequence coding for Leu353-Thr543 (LCDDeltah, lacking the C-terminus of P domain), were inserted in expression vectors pDEST-17, yielding the respective recombinant plasmids. Overexpressed fusion polypeptides were solubilized with 6 M urea and purified on affinity columns, and urea was removed by dialysis. Their predicted secondary structure contents were confirmed by CD spectra. In addition, both recombinant polypeptides exhibited high-affinity 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5'-triphosphate (TNP-ATP) binding (Kd = 1.9 microM and 2.9 microM for LCDh and LCDDeltah, respectively), suggesting that they have native-like folding. The gel filtration profile (HPLC) of purified LCDh showed two main peaks, with molecular weights of 95 kDa and 39 kDa, compatible with dimeric and monomeric forms, respectively. However, a single elution peak was observed for purified LCDDeltah, with an estimated molecular weight of 29 kDa, as expected for a monomer. Together, these data suggest that LCDh exist in monomer-dimer equilibrium, and that the C-terminus of P domain is necessary for self-association. We propose that such association is due to interaction between vicinal P domains, which may be of functional relevance for H+ -ATPase in native membranes. We discuss a general dimeric model for P-ATPases with interacting P domains, based on published crystallography and cryo-electron microscopy evidence. 相似文献
17.
Functional molecular masses of vacuolar membrane H+-ATPase from Saccharomyces cerevisiae as studied by radiation inactivation analysis 总被引:1,自引:0,他引:1
The functional molecular masses of the vacuolar membrane H+-ATPase in Saccharomyces cerevisiae under two kinetic conditions for ATP hydrolysis were measured by radiation inactivation. When vacuolar membrane vesicles were exposed to gamma-rays from 60Co, the activities catalyzing a single-cycle and multi-cycles of ATP hydrolysis both decreased as single-exponential functions of the radiation dosage. By applying the target theory, the functional molecular masses for single- and multi-cycle hydrolyses of ATP were determined to be approx. 0.9-1.1 X 10(5) and 4.1-5.3 X 10(5) Da, respectively. N,N'-Dicyclohexylcarbodiimide (DCCD) did not inhibit the former reaction but strongly inhibited the latter. It is suggested that the ATPase with a minimal composite of subunits a and b, in which subunit c is not necessarily involved operationally, can catalyze single-cycle hydrolysis of ATP, whereas for multi-cycle hydrolysis of ATP, the ATPase requires a properly organized oligomeric structure with subunits a-c, which may direct a positive cooperative mechanism of ATP hydrolysis and coupled H+ translocation in a DCCD-sensitive manner. 相似文献
18.
A method for the purification of relatively large quantities of the Neurospora crassa plasma membrane proton translocating ATPase is described. Cells of the cell wall-less sl strain of Neurospora grown under O2 to increase cell yields are treated with concanavalin A to stabilize the plasma membrane and homogenized in deoxycholate, and the resulting lysate is centrifuged at 13,500g. The pellet obtained consists almost solely of concanavalin A-stabilized plasma membrane sheets greatly enriched in the H+-ATPase. After removal of the bulk of the concanavalin A by treatment of the sheets with alpha-methylmannoside, the membranes are treated with lysolecithin, which preferentially extracts the H+-ATPase. Purification of the lysolecithin-solubilized ATPase by glycerol density gradient sedimentation yields approximately 50 mg of enzyme that is 91% free of other proteins as judged by quantitative densitometry of Coomassie blue-stained gels. The specific activity of the enzyme at this stage is about 33 mumol of P1 released/min/mg of protein at 30 degrees C. A second glycerol density gradient sedimentation step yields ATPase that is about 97% pure with a specific activity of about 35. For chemical studies or other investigations that do not require catalytically active ATPase, virtually pure enzyme can be prepared by exclusion chromatography of the sodium dodecyl sulfate-disaggregated, gradient-purified ATPase on Sephacryl S-300. 相似文献
19.
Summary Mineral transport across the plasma membrane of plant cells is controlled by an electrochemical gradient of protons. This
gradient is generated by an ATP-consuming enzyme in the membrane known as a proton pump, or H+-ATPase. The protein has a catalytic subunit of Mr=100,000 and is a prominent band when plasma membrane proteins are analyzed
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
We generated specific rabbit polyclonal antibody against the Mr=100,000 H+-ATPase and used the antibody to screen λgtll expression vector libraries of plant DNA. Several phage clones producing immunoreactive
protein, and presumably containing DNA sequences for the ATPase structural gene, were isolated and purified from a carrot
cDNA library and a Arabidopsis genomic DNA library. These studies represent our first efforts at cloning the structural gene
for a plant plasma membrane transport protein. Applicability of the technique to other transport protein genes and the potential
for use of recombinant DNA technology in plant mineral transport research are discussed. 相似文献
20.
Fernandes AR Durão PJ Santos PM Sá-Correia I 《Biochemical and biophysical research communications》2003,312(4):1317-1324
The stimulation of the activity of the H(+)-ATPase present in the vacuolar membrane (V-ATPase) of Saccharomyces cerevisiae is here described in response to a moderate stress induced by 2,4-dichlorophenoxyacetic acid (2,4-D). This in vivo activation (up to 5-fold) took place essentially during the adaptation period, preceding cell division under herbicide stress, in coordination with a marked activation of plasma membrane H(+)-ATPase (PM-ATPase) (up to 30-fold) and the decrease of intracellular and vacuolar pH values, suggesting that activation may be triggered by acidification. Single deletion of VMA1 and genes encoding other V-ATPase subunits led to a more extended period of adaptation and to slower growth under 2,4-D stress. Results suggest that a functional V-ATPase is required to counteract, more rapidly and efficiently, the dissipation of the physiological H(+)-gradient across vacuolar membrane registered during 2,4-D adaptation. 相似文献