首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The extracellular protein Reln controls neuronal migrations in parts of the cortex, hippocampus and cerebellum. In vivo, absence of Reln correlates with up-regulation of the docking protein Dab1 and decreased Dab1 tyrosine phosphorylation. Loss of the Reln receptor proteins, apolipoprotein receptor 2 and very low density lipoprotein receptor, results in a Reln-like phenotype accompanied by increased Dab1 protein expression. Complete loss of Dab1, however, recapitulates the Reln phenotype. RESULTS: To determine whether Dab1 tyrosine phosphorylation affects Dab1 protein expression and positioning of embryonic neurons, we have identified Dab1 tyrosine phosphorylation sites. We then generated mice in which the Dab1 protein had all the potential tyrosine phosphorylation sites mutated. This mutant protein is not tyrosine phosphorylated during brain development and is not upregulated to the extent observed in the Reln or the apoER2 and VLDLR receptor mutants. Animals expressing the non-phosphorylated Dab1 protein have a phenotype similar to the dab1-null mutant. CONCLUSIONS: Dab1 is downregulated by the Reln signal in neurons in the absence of tyrosine phosphorylation. Dab1 tyrosine phosphorylation sites and not downregulation of Dab1 protein are required for Reln signaling.  相似文献   

2.
The Reelin ligand regulates a Dab1-dependent signaling pathway required for brain lamination and normal dendritogenesis, but the specific mechanisms underlying these actions remain unclear. We find that Stk25, a modifier of Reelin-Dab1 signaling, regulates Golgi morphology and neuronal polarization as part of an LKB1-Stk25-Golgi matrix protein 130 (GM130) signaling pathway. Overexpression of Stk25 induces Golgi condensation and multiple axons, both of which are rescued by Reelin treatment. Reelin stimulation of cultured neurons induces the extension of the Golgi into dendrites, which is suppressed by Stk25 overexpression. In vivo, Reelin and Dab1 are required for the normal extension of the Golgi apparatus into the apical dendrites of hippocampal and neocortical pyramidal neurons. This demonstrates that the balance between Reelin-Dab1 signaling and LKB1-Stk25-GM130 regulates Golgi dispersion, axon specification, and dendrite growth and provides insights into the importance of the Golgi apparatus for cell polarization.  相似文献   

3.
4.
Protein phosphorylation is essential for the regulation of cell growth, division, and differentiation in both prokaryotes and eukaryotes. Signal transduction in prokaryotes was previously thought to occur primarily by histidine kinases, involved in two-component signaling pathways. Lately, bacterial homologues of eukaryotic-type serine/threonine kinases and phosphatases have been found to be necessary for cellular functions such as growth, differentiation, pathogenicity, and secondary metabolism. The Gram-positive bacteria Streptococcus agalactiae (group B streptococci, GBS) is an important human pathogen. We have identified and characterized a eukaryotic-type serine/threonine protein kinase (Stk1) and its cognate phosphatase (Stp1) in GBS. Biochemical assays revealed that Stk1 has kinase activity and localizes to the membrane and that Stp1 is a soluble protein with manganese-dependent phosphatase activity on Stk1. Mutations in these genes exhibited pleiotropic effects on growth, virulence, and cell segregation of GBS. Complementation of these mutations restored the wild type phenotype linking these genes to the regulation of various cellular processes in GBS. In vitro phosphorylation of cell extracts from wild type and mutant strains revealed that Stk1 is essential for phosphorylation of six GBS proteins. We have identified the predominant endogenous substrate of both Stk1 and Stp1 as a manganese-dependent inorganic pyrophosphatase (PpaC) by liquid chromatography/tandem mass spectrometry. These results suggest that these eukaryotic-type enzymes regulate pyrophosphatase activity and other cellular functions of S. agalactiae.  相似文献   

5.
Presence of neuritic plaques and neurofibrillary tangles in the brain are two neuropathological hallmarks of Alzheimer's disease (AD), although the molecular basis of their coexistence remains elusive. The neurofibrillary tangles are composed of microtubule binding protein Tau, whereas neuritic plaques consist of amyloid-beta peptides derived from amyloid precursor protein (APP). Recently, the peptidyl-prolyl cis/trans isomerase Pin1 has been identified to regulate the function of certain proteins after phosphorylation and to play an important role in cell cycle regulation and cancer development. New data indicate that Pin1 also regulates the function and processing of Tau and APP, respectively, and is important for protecting against age-dependent neurodegeneration. Furthermore, Pin1 is the only gene known so far that, when deleted in mice, can cause both Tau and Abeta-related pathologies in an age-dependent manner, resembling many aspects of human Alzheimer's disease. Moreover, in the human AD brain Pin1 is downregulated or inhibited by oxidative modifications and/or genetic changes. These results suggest that Pin1 deregulation may provide a link between formation of tangles and plaques in AD.  相似文献   

6.
In Parkinson disease (PD) brain, a progressive loss of dopaminergic neurons leads to dopamine depletion in the striatum and reduced motor function. Lewy bodies, the characteristic neuropathological lesions found in the brain of PD patients, are composed mainly of α-synuclein protein. Three point mutations in the α-synuclein gene are associated with familial PD. In addition, genome-wide association studies indicate that α-synuclein and Tau protein synergistically increase disease susceptibility in the human population. To determine the mechanism by which α-synuclein and Tau act together, we have used PD-causing neurotoxin MPTP and pathogenic α-synuclein mutants A30P, E46K, and A53T as models. We found that exposure of human neuroblastoma M17 cells to MPTP enhances the intracellular α-synuclein protein level, stimulates Tau protein phosphorylation at Ser(262), and induces apoptosis. In mouse brain, ablation of α-synuclein function significantly suppresses Tau phosphorylation at Ser(262). In vitro, α-synuclein binds to phosphorylated Ser(214) of Tau and stimulates PKA-catalyzed Tau phosphorylation at Ser(262). PD-associated α-synuclein mutations increase α-synuclein binding to Tau and stimulate Tau phosphorylation at Ser(262). In HEK-293 cells, α-synuclein and its all PD-associated mutants destabilize the microtubule cytoskeleton in a similar extent. In contrast, when co-expressed with Tau, these PD-associated mutants destabilize microtubules with significantly higher potency than WT. Our results demonstrate that α-synuclein is an in vivo regulator of Tau protein phosphorylation at Ser(262) and suggest that PD-associated risk factors such as environmental toxins and α-synuclein mutations promote Tau phosphorylation at Ser(262), causing microtubule instability, which leads to loss of dopaminergic neurons in PD brain.  相似文献   

7.
Tau is a neuronal microtubule-associated protein. Its hyperphosphorylation plays a critical role in Alzheimer disease (AD). Expression and phosphorylation of tau are regulated developmentally, but its dynamic regulation and the responsible kinases or phosphatases remain elusive. Here, we studied the developmental regulation of tau in rats during development from embryonic day 15 through the age of 24 months. We found that tau expression increased sharply during the embryonic stage and then became relatively stable, whereas tau phosphorylation was much higher in developing brain than in mature brain. However, the extent of tau phosphorylation at seven of the 14 sites studied was much less in developing brain than in AD brain. Tau phosphorylation during development matched the period of active neurite outgrowth in general. Tau phosphorylation at various sites had different topographic distributions. Several tau kinases appeared to regulate tau phosphorylation collectively at overlapping sites, and the decrease of overall tau phosphorylation in adult brain might be due to the higher levels of tau phosphatases in mature brain. These studies provide new insight into the developmental regulation of site-specific tau phosphorylation and identify the likely sites required for the abnormal hyperphosphorylation of tau in AD.  相似文献   

8.
Pinning down phosphorylated tau and tauopathies   总被引:4,自引:0,他引:4  
Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.  相似文献   

9.
The study of mice with spontaneous and targeted mutations has uncovered a signaling pathway that controls neuronal positioning during mammalian brain development. Mice with disruptions in reelin, dab1, or both vldlr and apoER2 are ataxic, and they exhibit severe lamination defects within several brain structures. Reelin is a secreted extracellular protein that binds to the very low density lipoprotein receptor and the apolipoprotein E receptor 2 on the surface of neurons. Disabled-1 (Dab1), an intracellular adapter protein containing a PTB (phosphotyrosine binding) domain, is tyrosyl-phosphorylated during embryogenesis, but it accumulates in a hypophosphorylated form in mice lacking Reelin or both very low density lipoprotein receptor and apolipoprotein E receptor 2. Dab1 is rapidly phosphorylated when neurons isolated from embryonic brains are stimulated with Reelin, and several tyrosines have been implicated in this response. Mice with phenylalanine substitutions of all five tyrosines (Tyr(185), Tyr(198), Tyr(200), Tyr(220), and Tyr(232)) exhibit a reeler phenotype, implying that tyrosine phosphorylation is critical for Dab1 function. Here we report that, although Src can phosphorylate all five tyrosines in vitro, Tyr(198) and Tyr(220) represent the major sites of Reelin-induced Dab1 phosphorylation in embryonic neurons.  相似文献   

10.
The neural microtubule-associated protein Tau binds directly to microtubules and regulates their dynamic behavior. In addition to being required for normal development, maintenance, and function of the nervous system, Tau is associated with several neurodegenerative diseases, including Alzheimer disease. One group of neurodegenerative dementias known as FTDP-17 (fronto-temporal dementia with Parkinsonism linked to chromosome 17) is directly linked genetically to mutations in the tau gene, demonstrating that Tau misfunction can cause neuronal cell death and dementia. These mutations result either in amino acid substitutions in Tau or in altered Tau mRNA splicing that skews the expression ratio of wild-type 3-repeat and 4-repeat Tau isoforms. Because wild-type Tau regulates microtubule dynamics, one possible mechanism underlying Tau-mediated neurodegeneration is aberrant regulation of microtubule behavior. In this study, we microinjected normal and mutated Tau protein into cultured cells expressing fluorescent tubulin and measured the effects on the dynamic instability of individual microtubules. We found that the FTDP-17 amino acid substitutions G272V (in both 3-repeat and 4-repeat Tau contexts), DeltaK280, and P301L all exhibited markedly reduced abilities to regulate dynamic instability relative to wild-type Tau. In contrast, the FTDP-17 R406W mutation (which maps in a regulatory region outside the microtubule binding domain of Tau) did not significantly alter the ability of 3-repeat or 4-repeat Tau to regulate microtubule dynamics. Overall, these data are consistent with a loss-of-function model in which both amino acid substitutions and altered mRNA splicing in Tau lead to neurodegeneration by diminishing the ability of Tau to properly regulate microtubule dynamics.  相似文献   

11.
The CD95 (Apo-1/Fas)/CD95 ligand (CD95L) system is best characterized as a trigger of apoptosis. Nevertheless, despite broad expression of CD95L and CD95 in the developing brain, absence of functional CD95 (lpr mice) or CD95L (gld mice) does not alter neuronal numbers. Here, we report that in embryonic hippocampal and cortical neurons in vivo and in vitro CD95L does not induce apoptosis. Triggering of CD95 in cultured immature neurons substantially increases neurite branches by promoting their formation. The branching increase occurs in a caspase-independent and death domain-dependent manner and is paralleled by an increase in the nonphosphorylated form of Tau. Most importantly, lpr and gld mutants exhibit a reduced number of dendritic branches in vivo at the time when synapse formation takes place. These data reveal a novel function for the CD95 system and add to the picture of guidance molecules in the developing brain.  相似文献   

12.
Progesterone exerts a variety of actions in the brain, where it is rapidly metabolized to 5alpha-dihydroprogesterone (DHP) and 3alpha,5alpha-tetrahydroprogesterone (THP). The effect of progesterone and its metabolites on the expression and phosphorylation of the microtubule-associated protein Tau and glycogen synthase kinase 3beta (GSK3beta), a kinase involved in Tau phosphorylation, were assessed in two progesterone-sensitive brain areas: the hypothalamus and the cerebellum. Administration of progesterone, DHP, and THP to ovariectomized rats did not affect Tau and GSK3beta assessed in whole hypothalamic homogenates. In contrast, progesterone and its metabolites resulted in a significant decrease in the expression of Tau and GSK3beta in the cerebellum. Furthermore, progesterone administration resulted in an increase in the phosphorylation of two epitopes of Tau (Tau-1 and PHF-1) phosphorylated by GSK3beta, but did not affect the phosphorylation of an epitope of Tau (Ser262) that is GSK3beta insensitive. These effects were accompanied by a decrease in the phosphorylation of GSK3beta in serine, which is associated to an increase in its activity, suggesting that the effect of progesterone on Tau-1 and PHF-1 phosphorylation in the cerebellum is mediated by GSK3beta. The regulation of Tau expression and phosphorylation by progesterone may contribute to the hormonal regulation of cerebellar function by the modification of neuronal cytoskeleton.  相似文献   

13.
Numerous enzymes hyperphosphorylate Tau in vivo, leading to the formation of neurofibrillary tangles (NFTs) in the neurons of Alzheimer's disease (AD). Compared with age-matched normal controls, we demonstrated here that the protein levels of WW domain-containing oxidoreductase WOX1 (also known as WWOX or FOR), its Tyr33-phosphorylated form, and WOX2 were significantly down-regulated in the neurons of AD hippocampi. Remarkably knock-down of WOX1 expression by small interfering RNA in neuroblastoma SK-N-SH cells spontaneously induced Tau phosphorylation at Thr212/Thr231 and Ser515/Ser516, enhanced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) and ERK, and enhanced NFT formation. Also an increased binding of phospho-GSK-3beta with phospho-Tau was observed in these WOX1 knock-down cells. In comparison, increased phosphorylation of Tau, GSK-3beta, and ERK, as well as NFT formation, was observed in the AD hippocampi. Activation of JNK1 by anisomycin further increased Tau phosphorylation, and SP600125 (a JNK inhibitor) and PD-98059 (an MEK1/2 inhibitor) blocked Tau phosphorylation and NFT formation in these WOX1 knock-down cells. Ectopic or endogenous WOX1 colocalized with Tau, JNK1, and GSK-3beta in neurons and cultured cells. 17Beta-estradiol, a neuronal protective hormone, increased the binding of WOX1 and GSK-3beta with Tau. Mapping analysis showed that WOX1 bound Tau via its COOH-terminal short-chain alcohol dehydrogenase/reductase domain. Together WOX1 binds Tau via its short-chain alcohol dehydrogenase/reductase domain and is likely to play a critical role in regulating Tau hyperphosphorylation and NFT formation in vivo.  相似文献   

14.
MAP kinase signaling has been implicated in brain development, long-term memory, and the response to antidepressants. Inducible Braf knockout mice, which exhibit protein depletion in principle forebrain neurons, enabled us to unravel a new role of neuronal MAPK signaling for emotional behavior. Braf mice that were induced during adulthood showed normal anxiety but increased depression-like behavior, in accordance with pharmacological findings. In contrast, the inducible or constitutive inactivation of Braf in the juvenile brain leads to normal depression-like behavior but decreased anxiety in adults. In juvenile, constitutive mutants we found no alteration of GABAergic neurotransmission but reduced neuronal arborization in the dentate gyrus. Analysis of gene expression in the hippocampus revealed nine downregulated MAPK target genes that represent candidates to cause the mutant phenotype.Our results reveal the differential function of MAPK signaling in juvenile and adult life phases and emphasize the early postnatal period as critical for the determination of anxiety in adults. Moreover, these results validate inducible gene inactivation as a new valuable approach, allowing it to discriminate between gene function in the adult and the developing postnatal brain.  相似文献   

15.
《朊病毒》2013,7(1):21-25
The crucial role of the neuronal Tau protein in microtubule stabilization and axonal transport suggests that too little or too much Tau might lead to neuronal dysfunction. The presence of a hyper-phosphorylated but non-aggregated molecule as a toxic species that might sequester normal Tau is discussed. We present recent in vitro results that might allow to dissect the role of individual phosphorylation sites on its structure and function. We also discuss in this review the role of phosphorylation for the aggregation of the neuronal Tau protein, and compare it to the aggregation induced by external poly-anions.  相似文献   

16.
Tau in Alzheimer disease brain is highly phosphorylated and aggregated into paired helical filaments comprising characteristic neurofibrillary tangles. Here we have analyzed insoluble Tau (PHF-tau) extracted from Alzheimer brain by mass spectrometry and identified 11 novel phosphorylation sites, 10 of which were assigned unambiguously to specific amino acid residues. This brings the number of directly identified sites in PHF-tau to 39, with an additional six sites indicated by reactivity with phosphospecific antibodies to Tau. We also identified five new phosphorylation sites in soluble Tau from control adult human brain, bringing the total number of reported sites to nine. To assess which kinases might be responsible for Tau phosphorylation, we used mass spectrometry to determine which sites were phosphorylated in vitro by several kinases. Casein kinase 1delta and glycogen synthase kinase-3beta were each found to phosphorylate numerous sites, and each kinase phosphorylated at least 15 sites that are also phosphorylated in PHF-tau from Alzheimer brain. A combination of casein kinase 1delta and glycogen synthase kinase-3beta activities could account for over three-quarters of the serine/threonine phosphorylation sites identified in PHF-tau, indicating that casein kinase 1delta may have a role, together with glycogen synthase kinase-3beta, in the pathogenesis of Alzheimer disease.  相似文献   

17.
Mutations affecting either the structure or regulation of the microtubule-associated protein Tau cause neuronal cell death and dementia. However, the molecular mechanisms mediating these deleterious effects remain unclear. Among the most characterized activities of Tau is the ability to regulate microtubule dynamics, known to be essential for proper cell function and viability. Here we have tested the hypothesis that Tau mutations causing neurodegeneration also alter the ability of Tau to regulate the dynamic instability behaviors of microtubules. Using in vitro microtubule dynamics assays to assess average microtubule growth rates, microtubule growth rate distributions, and catastrophe frequencies, we found that all tested mutants possessing amino acid substitutions or deletions mapping to either the repeat or interrepeat regions of Tau do indeed compromise its ability to regulate microtubule dynamics. Further mutational analyses suggest a novel mechanism of Tau regulatory action based on an "alternative core" of microtubule binding and regulatory activities composed of two repeats and the interrepeat between them. In this model, the interrepeat serves as the primary regulator of microtubule dynamics, whereas the flanking repeats serve as tethers to properly position the interrepeat on the microtubule. Importantly, since there are multiple interrepeats on each Tau molecule, there are also multiple cores on each Tau molecule, each with distinct mechanistic capabilities, thereby providing significant regulatory potential. Taken together, the data are consistent with a microtubule misregulation mechanism for Tau-mediated neuronal cell death and provide a novel mechanistic model for normal and pathological Tau action.  相似文献   

18.
The Alzheimer's disease beta-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2-/-APLP1-/- and APLP2-/-APP-/- mice die postnatally, while APLP1-/-APP-/- mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive through embryonic development, and die shortly after birth. In contrast to double-mutant animals with perinatal lethality, 81% of triple mutants showed cranial abnormalities. In 68% of triple mutants, we observed cortical dysplasias characterized by focal ectopic neuroblasts that had migrated through the basal lamina and pial membrane, a phenotype that resembles human type II lissencephaly. Moreover, at E18.5 triple mutants showed a partial loss of cortical Cajal Retzius (CR) cells, suggesting that APP/APLPs play a crucial role in the survival of CR cells and neuronal adhesion. Collectively, our data reveal an essential role for APP family members in normal brain development and early postnatal survival.  相似文献   

19.
20.
Tau microtubule-associated proteins constitute a group of developmentally regulated neuronal proteins. Using the high-resolution two-dimensional polyacrylamide gel electrophoresis system, we have resolved more than 60 distinct Tau isoforms in the adult mouse brain. Tau protein heterogeneity increases drastically during the second week of brain development. In neuronal primary cell cultures, some of these developmental changes can be observed. The increase of Tau heterogeneity in culture is more limited and reaches a plateau after a period corresponding to the second week of development. Most, if not all, of the vast Tau heterogeneity can be attributed to intensive post-translational phosphorylation, which may affect the structure of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号