首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The absorption spectra of melanins isolated from some black ascomycetes, as well as of synthetic melanin and natural melanin from Sepia officinalis, were recorded in the long-wavelength ultraviolet region A (320 nm < lambda < 400 nm) and in the blue-violet region of the electromagnetic spectrum at illumination intensities varying from 0.02 to 1 mW/cm2. The photochemical properties of fungal melanins were found to be dependent on both the producing strain and the conditions of its cultivation. The fungal melanins are more susceptible to photomodification and more biologically active than the synthetic melanin, indicating that these properties may be related. The data obtained suggest that the fungal melanins susceptible to photomodification possess higher biological activity than commercial melanins.  相似文献   

2.
Zhong J  Frases S  Wang H  Casadevall A  Stark RE 《Biochemistry》2008,47(16):4701-4710
Melanins serve a variety of protective functions in plants and animals, but in fungi such as Cryptococcus neoformans they are also associated with virulence. A recently developed solid-state nuclear magnetic resonance (NMR) strategy, based on the incorporation of site-specific (13)C-enriched precursors into melanin, followed by spectroscopy of both powdered and solvent-swelled melanin ghosts, was used to provide new molecular-level insights into fungal melanin biosynthesis. The side chain of an l-dopa precursor was shown to cyclize and form a proposed indole structure in C. neoformans melanin, and modification of the aromatic rings revealed possible patterns of polymer chain elongation and cross-linking within the biopolymer. Mannose supplied in the growth medium was retained as a beta-pyranose moiety in the melanin ghosts even after exhaustive degradative and dialysis treatments, suggesting the possibility of tight binding or covalent incorporation of the pigment into the polysaccharide fungal cell walls. In contrast, glucose was scrambled metabolically and incorporated into both polysaccharide cell walls and aliphatic chains present in the melanin ghosts, consistent with metabolic use as a cellular nutrient as well as covalent attachment to the pigment. The prominent aliphatic groups reported previously in several fungal melanins were identified as triglyceride structures that may have one or more sites of chain unsaturation. These results establish that fungal melanin contains chemical components derived from sources other than l-dopa polymerization and suggest that covalent linkages between l-dopa-derived products and polysaccharide components may serve to attach this pigment to cell wall structures.  相似文献   

3.
Turkovskii  I. I.  Yurlova  N. A. 《Microbiology》2002,71(4):410-416
The absorption spectra of melanins isolated from some black ascomycetes, as well as of synthetic melanin and natural melanin from Sepia officinalis, were recorded in the long-wavelength ultraviolet region A (320 nm < < 400 nm) and in the blue–violet region of the electromagnetic spectrum at illumination intensities varying from 0.02 to 1 mW/cm2. The photochemical properties of fungal melanins were found to be dependent on both the producing strain and the conditions of its cultivation. The fungal melanins are more susceptible to photomodification and more biologically active than the synthetic melanin, indicating that these properties may be related. The data obtained suggest that the fungal melanins susceptible to photomodification possess higher biological activity than commercial melanins.  相似文献   

4.
A number of purified natural and synthetic melanins have been examined by X-ray diffraction. A consistent finding with all samples was the lack of structure in the diffraction pattern corresponding to any significant crystallinity in these melanin preparations. A diffuse ring, centered at a Bragg spacing of 3.4 A was consistently found in samples of melanin from animal sources, and a similar ring at 4.2 A in all melanins obtained from plants. Models for these two polymer types, based upon the current concept that they primarily involve indole and catechol monomeric units respectively, were then evaluated by a Monte Carlo method. From the comparison of the observed spacings with the calculated ones it was concluded that the 4.2 A spacing in the catechol melanins is probably related to the average interaction between adjacent monomeric units, with mutually random orientations. The 3.4 A spacing observed in indole melanins appears to derive from the tendency of indole monomers (probably of adjacent chains) tending to aggregate in near parallel stacks. Some randomness in the form of translations and rotations parallel to the planar groups is consistent with the diffraction patterns. An interesting finding was that the diffraction pattern of synthetic melanin prepared by the alkaline auto-oxidation of catechol gave the 3.4 A spacing found in the indole melanins of natural origin.  相似文献   

5.
A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists.  相似文献   

6.
Comparative studies of fungal melanin and two preparations of the high-molecular-weight humin-like substances formed during a solid-phase cultivation of the basidiomycete Cerrena maxima 0275 for 45 and 70 days were performed. The fungal melanin from Aspergillus niger and the humin-like substances synthesized by the basidiomycete C. maxima 0275 are similar in their physicochemical properties (elemental composition and behavior in acids and alkalis) and auxin-like activities. However, these biopolymers differ, essentially, at the structural level. According to IR spectroscopy data, the obtained humin-like substances display a higher similarity to natural humic acids and are more diverse in their functional groups compared with fungal melanins. Presumably, this is connected with the fact that laccase is involved in formation of humin-like substances; moreover, this enzyme is involved not only in the synthesis of these polymers, but also in their modification and degradation.  相似文献   

7.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a "leaky melanin" phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.  相似文献   

8.
While studying the interaction of Cryptococcus neoformans with Dictyostelium discoideum, we noticed that yeast colonies in agar with a feeder lawn of Klebsiella aerogenes were brown. This finding was intriguing because C. neoformans colonies are not pigmented unless they are provided with precursors for melanization. Strains of all C. neoformans serotypes produced brown pigment in response to K. aerogenes at 22, 30, and 37 degrees C. Pigment production required fungal laccase and was suppressed by high concentrations of glucose. Treatment of brown cells with guanidinium isothiocyanate and hot concentrated HCl yielded particulate material that had the physical and chemical characteristics of melanins. No pigment formation was observed when C. neoformans was exposed to live Escherichia coli or heat-killed K. aerogenes. Analysis of K. aerogenes supernatants revealed the presence of dopamine, which can be a substrate for melanin synthesis by C. neoformans. Our findings illustrate a remarkable interaction between a pathogenic fungus and a gram-negative bacterium, in which the bacterium produces a substrate that promotes fungal melanization. This observation provides a precedent that could explain the source of a substrate for C. neoformans melanization in the environment.  相似文献   

9.
The Manalpha1,3(Xylbeta1,2)Manalpha structural motif is common to both capsular polysaccharides of Cryptococcus neoformans and to cryptococcal glycosphingolipids. Comparative analysis of glycosphingolipid structural profiles in wild-type and mutant strains showed that the Xylbeta1,2-transferase (Cxt1p) that participates in capsular polysaccharide biosynthesis is also the sole transferase responsible for adding xylose to C. neoformans glycosphingolipids.  相似文献   

10.
Using scanning tunneling microscopy (STM), we have imaged two types of mildly‐bleached, synthetic tyrosine‐derived melanins for comparison with the unbleached melanin from which they were prepared. These mildly‐bleached melanins were generated by mild oxidation of the unbleached melanin, using either basic hydrogen peroxide or air/light. The unbleached melanin, and two mildly‐bleached melanins, were independently deposited from very dilute tetrahydrofuran (THF) solutions onto highly oriented pyrolytic graphite (HOPG) substrate for STM imaging. Lateral dimensions (23 Å, average of two directions) of structures from each of the three samples showed no differences. However, structures from both mildly‐bleached melanins showed similar dramatic decreases (from ~15 Å to ~5 Å) in their STM‐measured apparent heights, compared with structures from the unbleached melanin sample. These STM observations are compatible with structural models for unbleached and mildly‐bleached melanins, incorporating a three‐dimensional structure for unbleached melanin composed of multi‐layered, Π–Π‐stacked, carboxylic and amino variants of polyaromatic polymeric sheets. The STM‐observed decrease in apparent heights after mild oxidation, which we associate with a change in stack height, has been confirmed by experiments using tapping mode atomic force microscopy (TM‐AFM) for the unbleached and mildly‐hydrogen‐peroxide‐bleached melanins (from ~14 Å to ~6 Å). In these TM‐AFM experiments, the melanins were deposited directly onto magnesium cation‐treated glass substrates in contact with methanolic solutions of each of the melanins. We interpret our mild‐bleaching results as an oxidative conversion of the multi‐layered, stacked sheets of mainly carboxylic and amino variants of polyquinhydrone‐like moieties, to largely de‐stacked, mildly‐bleached melanin sheets. These oxidized and, hence, electron‐deficient sheets should not readily form multi‐layered, Π–Π interacting stacks, but instead appear to be either single‐layer polyquinone sheets or, at most, double‐layer polyquinhydrone sheets. The effects of such de‐stacking on in vivo melanin photoprotection, and structural similarities between melanin derived from natural sources and the synthetic melanin samples used in this work are discussed.  相似文献   

11.
Melanin is a virulence factor for many pathogenic fungal species, including Cryptococcus neoformans. Melanin is deposited in the cell wall, and melanin isolated from this fungus retains the shape of the cells, resulting in hollow spheres called "ghosts". In this study, atomic force, scanning electron, and transmission electron microscopy revealed that melanin ghosts are covered with roughly spherical granular particles approximately 40-130 nm in diameter, and that the melanin is arranged in multiple concentric layers. Nuclear magnetic resonance cryoporometry indicated melanin ghosts contain pores with diameters between 1 and 4 nm, in addition to a small number of pores with diameters near 30 nm. Binding of the antibodies to melanin reduced the apparent measured volume of these pores, suggesting a mechanism for their antifungal effect. We propose a model of cryptococcal melanin structure whereby the melanin granules are held together in layers. This structural model has implications for cell division, cell wall remodeling, and antifungal drug discovery.  相似文献   

12.
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.  相似文献   

13.
Comparative studies of fungal melanin and two preparations of the high-molecular-weight humin-like substances formed during a solid-phase cultivation of the basidiomycete Cerrena maxima 0275 for 45 and 70 days were performed. The fungal melanin from Aspergillus niger and the humin-like substances synthesized by the basidiomycete C. maxima 0275 are similar in their physicochemical properties (elemental composition and behavior in acids and alkalis) and auxin-like activities. However, these biopolymers differ, essentially, at the structural level. According to IR spectroscopy data, the obtained humin-like substances display a higher similarity to natural humic acids and are more diverse in their functional groups compared with fungal melanins. Presumably, this is connected with the fact that laccase is involved in formation of humin-like substances; moreover, this enzyme is involved not only in the synthesis of these polymers, but also in their modification and degradation.  相似文献   

14.
The polysaccharide capsule of the fungus Cryptococcus neoformans is its main virulence factor. In this study, we determined the effects of mannitol and glucose on the capsule and exopolysaccharide production. Growth in mannitol significantly increased capsular volume compared with cultivation in glucose. However, cells grown in glucose concentrations higher than 62.5 mM produced more exopolysaccharide than cells grown in mannitol. The fibre lengths and glycosyl composition of capsular polysaccharide from yeast grown in mannitol was structurally different from that of yeast grown in glucose. Furthermore, mannitol treatment of mice infected intratracheally with C. neoformans resulted in fungal cells with significantly larger capsules and the mice had reduced fungal dissemination to the brain. Our results demonstrate the capacity of carbohydrate source and concentration to modify the expression of a major virulence factor of C. neoformans. These findings may impact the clinical management of cryptococcosis.  相似文献   

15.
Cryptococcus neoformans is a facultative intracellular pathogen. The most distinctive feature of C. neoformans is a polysaccharide capsule that enlarges depending on environmental stimuli. The mechanism by which C. neoformans avoids killing during phagocytosis is unknown. We hypothesized that capsule growth conferred resistance to microbicidal molecules produced by the host during infection, particularly during phagocytosis. We observed that capsule enlargement conferred resistance to reactive oxygen species produced by H(2)O(2) that was not associated with a higher catalase activity, suggesting a new function for the capsule as a scavenger of reactive oxidative intermediates. Soluble capsular polysaccharide protected C. neoformans and Saccharomyces cerevisiae from killing by H(2)O(2). Acapsular mutants had higher susceptibility to free radicals. Capsular polysaccharide acted as an antioxidant in the nitroblue tetrazolium (NBT) reduction coupled to beta-nicotinamide adenine dinucleotide (NADH)/phenazine methosulfate (PMS) assay. Capsule enlargement conferred resistance to antimicrobial peptides and the antifungal drug Amphotericin B. Interestingly, the capsule had no effect on susceptibility to azoles and increased susceptibility to fluconazole. Capsule enlargement reduced phagocytosis by environmental predators, although we also noticed that in this system, starvation of C. neoformans cells produced resistance to phagocytosis. Our results suggest that capsular enlargement is a mechanism that enhances C. neoformans survival when ingested by phagocytic cells.  相似文献   

16.
目的从新生隐球菌B3501培养上清中分离和纯化荚膜多糖葡萄糖醛酸木糖甘露聚糖(GXM),观察其是否能调节巨噬细胞甘露糖受体MR的表达。方法采用乙醇沉淀荚膜多糖,十六烷基三甲基溴化铵(CTAB)特异性沉淀方法获得GXM,将GXM与巨噬细胞共孵育24 h,Western blot检测MR的表达变化情况。结果获得了毫克级的GXM,巨噬细胞与GXM孵育后甘露糖受体(mannose receptor,MR)的表达没有明显变化。结论新生隐球菌荚膜多糖GXM不影响巨噬细胞甘露糖受体MR的表达。  相似文献   

17.
Melanin from several insect samples was isolated and subjected to chemical degradation and HPLC analysis for melanin markers. Quantification of different melanin markers reveals that insect melanins are significantly different from that of the mammalian epidermal melanins. The eumelanin produced in mammals is derived from the oxidative polymerization of both 5,6‐dihydroxyindole and 5,6‐dihydroxyindole‐2‐carboxylic acids. The pheomelanin is formed by the oxidative polymerization of cysteinyldopa. Thus, dopa is the major precursor for both eumelanin and pheomelanin in mammals. But insect eumelanin appears to be mostly made from 5,6‐dihydroxyindole and originates from dopamine. More importantly, our study points out the wide spread occurrence of pheomelanin in many insect species. In addition, cysteinyldopamine and not cysteinyldopa is the major precursor for insect pheomelanin. Thus, both eumelanin and pheomelanin in insects differ from higher animals using dopamine and not dopa as the major precursor.  相似文献   

18.
In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties.  相似文献   

19.
During a study of serotyping of Cryptococcus neoformans, we found that the type strain of C. neoformans (CBS 132) was serotype A-D. This strain agglutinated with both factor 7 serum (specific for serotype A) and factor 8 serum (specific for serotype D) in our serotyping system. Therefore, we investigated the chemical structure of the antigenic capsular polysaccharide of this strain. The soluble capsular polysaccharide was obtained from the culture supernatant fluid by precipitation with ethanol. Column chromatography of the polysaccharide on DEAE-cellulose yielded three fractions (F-1 to F-3). The major antigenic activity was found in the F-3 fraction. The results obtained by methylation analysis, controlled Smith degradation-methylation analysis, partial acid hydrolysis, and other structural studies of F-3 polysaccharide indicated that the polysaccharide contains mannose, xylose, and glucuronic acid at a ratio of 7:2:2, and has a backbone of alpha (1-3)-linked D-mannopyranoside residues with a single branch of beta (1-2)-xylose and glucuronic acid. The ratio of mannose residues with or without a branch in the F-3 polysaccharide was 4:3 and its molecular weight calculated from the average of the degree of polymerization was 46,500 daltons. These results indicate that the chemical structure of the capsular polysaccharide of serotype A-D is very similar to those from serotypes A and D, suggesting that small differences in the molar ratio and pattern of linkage of monosaccharides in the branch of the polysaccharides of the three serotypes may be responsible for their different specificities.  相似文献   

20.
For more than 40 years fungi have been known to produce pigments known as melanins. Predominantly these have been dihydroxyphenylalanine (DOPA)-melanin and dihydroxynaphthalene (DHN)-melanin. The biochemical and genetical analysis of the biosynthesis pathways have led to the identification of the genes and corresponding enzymes of the pathways. Only recently have both these types of melanin been linked to virulence in some human pathogenic and phytopathogenic fungi. The absence of melanin in human pathogenic and phytopathogenic fungi often leads to a decrease in virulence. In phytopathogenic fungi such as Magnaporthe grisea and Colletotrichum lagenarium, besides other possible functions in pathogenicity, DHN-melanin plays an essential role in generating turgor for plant appressoria to penetrate plant leaves. While the function of melanin in human pathogenic fungi such as Cryptococcus neoformans, Wangiella dermatitidis, Sporothrix schenckii, and Aspergillus fumigatus is less well defined, its role in protecting fungal cells has clearly been shown. Specifically, the ability of both DOPA- and DHN-melanins to quench free radicals is thought to be an important factor in virulence. In addition, in several fungi the production of fungal virulence factors, such as melanin, has been linked to a cAMP-dependent signaling pathway. Many of the components involved in the signaling pathway have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号