首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In contrast to intestinal CD4+ regulatory T cells (Tregs), the generation and function of immunomodulatory intestinal CD8+ T cells is less well defined. To dissect the immunologic mechanisms of CD8+ T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied.

Methodology and Principal Findings

HA-specific CD8+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8+Foxp3+ T cells. Antigen-experienced CD8+ T cells in this transgenic mouse model suppressed the proliferation of CD8+ and CD4+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4+ Treg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8+Foxp3+ T cells.

Conclusion and Significance

We demonstrate that gut specific antigen presentation is sufficient to induce CD8+ Tregs in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.  相似文献   

2.
Leung EL  Fiscus RR  Tung JW  Tin VP  Cheng LC  Sihoe AD  Fink LM  Ma Y  Wong MP 《PloS one》2010,5(11):e14062

Background

The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential.

Methodology/Principal Finding

The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44 cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44 cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44 cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas.

Conclusion/Significance

Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment.  相似文献   

3.
Kandadi MR  Hua Y  Ma H  Li Q  Kuo SR  Frankel AE  Ren J 《PloS one》2010,5(10):e13335

Objectives

Anthrax infection is associated with devastating cardiovascular sequelae, suggesting unfavorable cardiovascular effects of toxins originated from Bacillus anthracis namely lethal and edema toxins. This study was designed to examine the direct effect of lethal toxins on cardiomyocyte contractile and intracellular Ca2+ properties.

Methods

Murine cardiomyocyte contractile function and intracellular Ca2+ handling were evaluated including peak shortening (PS), maximal velocity of shortening/ relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ rise measured as fura-2 fluorescent intensity (ΔFFI), and intracellular Ca2+ decay rate. Stress signaling and Ca2+ regulatory proteins were assessed using Western blot analysis.

Results

In vitro exposure to a lethal toxin (0.05 – 50 nM) elicited a concentration-dependent depression on cardiomyocyte contractile and intracellular Ca2+ properties (PS, ± dL/dt, ΔFFI), along with prolonged duration of contraction and intracellular Ca2+ decay, the effects of which were nullified by the NADPH oxidase inhibitor apocynin. The lethal toxin significantly enhanced superoxide production and cell death, which were reversed by apocynin. In vivo lethal toxin exposure exerted similar time-dependent cardiomyocyte mechanical and intracellular Ca2+ responses. Stress signaling cascades including MEK1/2, p38, ERK and JNK were unaffected by in vitro lethal toxins whereas they were significantly altered by in vivo lethal toxins. Ca2+ regulatory proteins SERCA2a and phospholamban were also differentially regulated by in vitro and in vivo lethal toxins. Autophagy was drastically triggered although ER stress was minimally affected following lethal toxin exposure.

Conclusions

Our findings indicate that lethal toxins directly compromised murine cardiomyocyte contractile function and intracellular Ca2+ through a NADPH oxidase-dependent mechanism.  相似文献   

4.

Background

Following injury, microglia become activated with subsets expressing nestin as well as other neural markers. Moreover, cerebral microglia can give rise to neurons in vitro. In a previous study, we analysed the proliferation potential and nestin re-expression of retinal macroglial cells such as astrocytes and Müller cells after optic nerve (ON) lesion. However, we were unable to identify the majority of proliferative nestin+ cells. Thus, the present study evaluates expression of nestin and other neural markers in quiescent and proliferating microglia in naïve retina and following ON transection in adult rats in vivo.

Methodology/Principal Findings

For analysis of cell proliferation and cells fates, rats received BrdU injections. Microglia in retinal sections or isolated cells were characterized using immunofluorescence labeling with markers for microglia (e.g., Iba1, CD11b), cell proliferation, and neural cells (e.g., nestin, vimentin, NG2, GFAP, Doublecortin etc.). Cellular analyses were performed using confocal laser scanning microscopy. In the naïve adult rat retina, about 60% of resting ramified microglia expressed nestin. After ON transection, numbers of nestin+ microglia peaked to a maximum at 7 days, primarily due to in situ cell proliferation of exclusively nestin+ microglia. After 8 weeks, microglia numbers re-attained control levels, but 20% were still BrdU+ and nestin+, although no further local cell proliferation occurred. In addition, nestin+ microglia co-expressed vimentin and NG2, but not GFAP or neuronal markers. Fourteen days after injury and following retrograde labeling of retinal ganglion cells (RGCs) with Fluorogold (FG), nestin+NG2+ microglia were positive for the dye indicating an active involvement of a proliferating cell population in phagocytosing apoptotic retinal neurons.

Conclusions/Significance

The current study provides evidence that in adult rat retina, a specific resident population of microglia expresses proteins of immature neural cells that are involved in injury-induced cell proliferation and phagocytosis while transdifferentiation was not observed.  相似文献   

5.

Background

As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients.

Methods and Findings

To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-260–74 epitope and against the new epitope TRP-2149–163. Importantly, human T cells specifically recognizing target cells loaded with the TRP-2149–163-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1284–298 as a new HLA-DRB1*0301-restricted CD4+ T cell epitope.

Conclusions

Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives.  相似文献   

6.
7.

Background

It is generally accepted that CD8+ T cell responses play an important role in control of immunodeficiency virus replication. The association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8+ cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8+ cells, implicating that these cells actively suppress viral replication in ECs.

Methods and Findings

Here we show that three ECs in that study made at least seven robust CD8+ T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8+ T cells in all of the newly identified epitopes in a cohort of chronically infected macaques.

Conclusions

Together, our data suggest that Mamu-B*08-restricted CD8+ T cell responses effectively control replication of pathogenic SIVmac239. All seven regions encoding Mamu-B*08-restricted CD8+ T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8+ T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8+ T cell-mediated control of HIV replication in humans.  相似文献   

8.

Background

Pro-inflammatory, cytotoxic CD4+CD28 T-cells with known defects in apoptosis have been investigated as markers of premature immuno-senescence in various immune-mediated diseases. In this study we evaluated the influence of polyclonal antilymphocyte globulins (ATG-Fresenius, ATG-F) on CD4+CD28 T-cells in vivo and in vitro.

Principal Findings

Surface and intracellular three colour fluorescence activated cell sorting analyses of peripheral blood mononuclear cells from 16 consecutive transplant recipients and short-term cell lines were performed. In vivo, peripheral levels of CD3+CD4+CD28 T-cells decreased from 3.7±7.1% before to 0±0% six hours after ATG-F application (P = 0.043) in 5 ATG-F treated but not in 11 control patients (2.9±2.9% vs. 3.9±3.0%). In vitro, ATG-F induced apoptosis even in CD4+CD28 T-cells, which was 4.3-times higher than in CD4+CD28+ T-cells. ATG-F evoked apoptosis was partially reversed by the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and prednisolon-21-hydrogensuccinate. ATG-F triggered CD25 expression and production of pro-inflammatory cytokines, and induced down-regulation of the type 1 chemokine receptors CXCR-3, CCR-5, CX3CR-1 and the central memory adhesion molecule CD62L predominately in CD4+CD28 T-cells.

Conclusion

In summary, in vivo depletion of peripheral CD3+CD4+CD28 T-cells by ATG-F in transplant recipients was paralleled in vitro by ATG-F induced apoptosis. CD25 expression and chemokine receptor down-regulation in CD4+CD28 T-cells only partly explain the underlying mechanism.  相似文献   

9.
McComb S  Mulligan R  Sad S 《PloS one》2010,5(12):e15328

Background

CD8+ T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8+ T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8+ T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8+ T cell responses has yet to be examined.

Methods and Findings

We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8+ T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8+ T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3hi and caspase-3low CD8+ T cells. The expression of active caspase-3 peaked before effector phenotype (CD62Llow) CD8+ T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8+ cells remained active caspase-3low throughout the contraction phase.

Conclusions

Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8+ T cells. Furthermore, the contraction of CD8+ T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3.  相似文献   

10.

Background

Vasculogenesis, the de novo formation of blood vessels from precursor cells is critical for a developing embryo. However, the signals and events that dictate the formation of primary axial vessels remain poorly understood.

Methodology/Principal Findings

In this study, we use ets-related protein-1 (etsrp), which is essential for vascular development, to analyze the early stages of vasculogenesis in zebrafish. We found etsrp + cells of the head, trunk and tail follow distinct developmental sequences. Using a combination of genetic, molecular and chemical approaches, we demonstrate that fli + etsrp + hemato-vascular progenitors (FEVPs) are proliferating at the lateral plate mesoderm (LPM). The Shh-VEGF-Notch-Hey2 signaling pathway controls the proliferation process, and experimental modulation of single components of this pathway alters etsrp + cell numbers at the LPM.

Conclusions/Significance

This study for the first time defines factors controlling proliferation, and cell numbers of pre-migratory FEVPs in zebrafish.  相似文献   

11.

Background

The present study investigates the effects of high external calcium concentration ([Ca2+]o) and the calcimimetic NPS R-467, a known calcium-sensing receptor (CaSR) agonist, on growth/proliferation of two equine size-sieved umbilical cord matrix mesenchymal stem cell (eUCM-MSC) lines. The involvement of CaSR on observed cell response was analyzed at both the mRNA and protein level.

Methodology/Principal Findings

A large (>8 µm in diameter) and a small (<8 µm) cell line were cultured in medium containing: 1) low [Ca2+]o (0.37 mM); 2) high [Ca2+]o (2.87 mM); 3) NPS R-467 (3 µM) in presence of high [Ca2+]o and 4) the CaSR antagonist NPS 2390 (10 µM for 30 min.) followed by incubation in presence of NPS R-467 in medium with high [Ca2+]o. Growth/proliferation rates were compared between groups. In large cells, the addition of NPS R-467 significantly increased cell growth whereas increasing [Ca2+]o was not effective in this cell line. In small cells, both higher [Ca2+]o and NPS R-467 increased cell growth. In both cell lines, preincubation with the CaSR antagonist NPS 2390 significantly inhibited the agonistic effect of NPS R-467. In both cell lines, increased [Ca2+]o and/or NPS R-467 reduced doubling time values.Treatment with NPS R-467 down-regulated CaSR mRNA expression in both cell lines. In large cells, NPS R-467 reduced CaSR labeling in the cytosol and increased it at cortical level.

Conclusions/Significance

In conclusion, calcium and the calcimimetic NPS R-467 reduce CaSR mRNA expression and stimulate cell growth/proliferation in eUCM-MSC. Their use as components of media for eUCM-MSC culture could be beneficial to obtain enough cells for down-stream purposes.  相似文献   

12.
Dai Y  Desano J  Tang W  Meng X  Meng Y  Burstein E  Lawrence TS  Xu L 《PloS one》2010,5(12):e14153

Background

Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC) with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.

Methodology/Principal Findings

We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1), with IC50 in the range of 1–2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.

Conclusions/Significance

Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be developed as a new therapeutic agent for hormone-refractory prostate cancer.  相似文献   

13.
14.

Background

The rate-limiting step that determines the dominant time constant (τD) of mammalian rod photoresponse recovery is the deactivation of the active phosphodiesterase (PDE6). Physiologically relevant Ca2+-dependent mechanisms that would affect the PDE inactivation have not been identified. However, recently it has been shown that τD is modulated by background light in mouse rods.

Methodology/Principal Findings

We used ex vivo ERG technique to record pharmacologically isolated photoreceptor responses (fast PIII component). We show a novel static effect of calcium on mouse rod phototransduction: Ca2+ shortens the dominant time constant (τD) of saturated photoresponse recovery, i.e., when extracellular free Ca2+ is decreased from 1 mM to ∼25 nM, the τD is reversibly increased ∼1.5–2-fold.

Conclusions

We conclude that the increase in τD during low Ca2+ treatment is not due to increased [cGMP], increased [Na+] or decreased [ATP] in rod outer segment (ROS). Also it cannot be due to protein translocation mechanisms. We suggest that a Ca2+-dependent mechanism controls the life time of active PDE.  相似文献   

15.
Zheng B  Zhang Q  Gao J  Han H  Li M  Zhang J  Qi J  Yan J  Gao GF 《PloS one》2011,6(5):e19510

Background

The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized.

Methodology/Principal Findings

Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn2+ and Mn2+. Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn2+ and Mn2+ induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn2+/Mn2+ bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein.

Conclusions/Significance

Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport.  相似文献   

16.
Yang X  Gong Y  Friesel R 《PloS one》2011,6(4):e18374

Background

Development of the hematopoietic and endothelial lineages derives from a common mesodermal precursor, the Flk1+ hemangioblast. However, the signaling pathways that regulate the development of hematopoietic and endothelial cells from this common progenitor cell remains incompletely understood. Using mouse models with a conditional Spry1 transgene, and a Spry1 knockout mouse, we investigated the role of Spry1 in the development of the endothelial and hematopoietic lineages during development.

Methodology/Principal Findings

Quantitative RT-PCR analysis demonstrates that Spry1, Spry2, and Spry4 are expressed in Flk1+ hemangioblasts in vivo, and decline significantly in c-Kit+ and CD41+ hematopoietic progenitors, while expression is maintained in developing endothelial cells. Tie2-Cre-mediated over-expression of Spry1 results in embryonic lethality. At E9.5 Spry1;Tie2-Cre embryos show near normal endothelial cell development and vessel patterning but have reduced hematopoiesis. FACS analysis shows a reduction of primitive hematopoietic progenitors and erythroblastic cells in Spry1;Tie2-Cre embryos compared to controls. Colony forming assays confirm the hematopoietic defects in Spry1;Tie2-Cre transgenic embryos. Immunostaining shows a significant reduction of CD41 or CD71 and dpERK co-stained cells in Spry1;Tie2-Cre embryos compared to controls, whereas the number of VEC+ and dpERK co-stained cells is comparable. Compared to controls, Spry1;Tie2-Cre embryos also show a decrease in proliferation and an increase in apoptosis. Furthermore, loss of Spry1 results in an increase of CD41+ and CD71+ cells at E9.5 compared with controls.

Conclusions/Significance

These data indicate that primitive hematopoietic cells derive from Tie2-expressing hemangioblasts and that Spry1 over expression inhibits primitive hematopoietic progenitor and erythroblastic cell development and expansion while having no obvious effect on endothelial cell development.  相似文献   

17.

Background

Cooperation of CD4+ T helper cells with specific B cells is crucial for protective vaccination against pathogens by inducing long-lived neutralizing antibody responses. During infection with persistence-prone viruses, prolonged virus replication correlates with low neutralizing antibody responses. We recently described that a viral mutant of lymphocytic choriomeningitis virus (LCMV), which lacks a T helper epitope, counterintuitively induced an enhanced protective antibody response. Likewise, partial depletion of the CD4+ T cell compartment by using anti-CD4 antibodies enhanced protective antibodies.

Principal Findings

Here we have developed a protocol to selectively reduce the CD4+ T cell response against viral CD4+ T cell epitopes. We demonstrate that in vivo treatment with LCMV-derived MHC-II peptides induced non-responsiveness of specific CD4+ T cells without affecting CD4+ T cell reactivity towards other antigens. This was associated with accelerated virus-specific neutralizing IgG-antibody responses. In contrast to a complete absence of CD4+ T cell help, tolerisation did not impair CD8+ T cell responses.

Conclusions

This result reveals a novel “negative vaccination” strategy where specific CD4+ T cell unresponsiveness may be used to enhance the delayed protective antibody responses in chronic virus infections.  相似文献   

18.

Background

Tat-interactive protein 60 (Tip60) is a member of the MYST family of histone acetyltransferases. Studies using cultured cells have shown that Tip60 has various functions including DNA repair, apoptosis and cell-cycle regulation. We globally ablated the Tip60 gene (Htatip), observing that Tip60-null embryos die at the blastocyst stage (Hu et al. Dev.Dyn.238:2912;2009). Although adult heterozygous (Tip60+/−) mice reproduce normally without a haploinsufficient phenotype, stress caused by Myc over-expression induced B-cell lymphoma in Tip60+/− adults, suggesting that Tip60 is a tumor suppressor (Gorrini et al. Nature 448:1063;2007). These findings prompted assessment of whether Tip60, alternative splicing of which generates two predominant isoforms termed Tip60α and Tip60β, functions to suppress the cell-cycle in adult cardiomyocytes.

Methodology/Principal Findings

Western blotting revealed that Tip60α is the predominant Tip60 isoprotein in the embryonic heart, transitioning at neonatal stages to Tip60β, which is the only isoprotein in the adult heart wherein it is highly enriched. Over-expression of Tip60β, but not Tip60α, inhibited cell proliferation in NIH3T3 cells; and, Tip60-haploinsufficient cultured neonatal cardiomyocytes exhibited increased cell-cycle activity. To address whether Tip60β suppresses the cardiomyocyte cell-cycle in the adult heart, hypertrophic stress was induced in Tip60+/+ and Tip+/− littermates via two methods, Myc over-expression and aortic banding. Based on immunostaining cell-cycle markers and western blotting cyclin D, stress increased cardiomyocyte cell-cycle mobilization in Tip60+/− hearts, in comparison with Tip60+/+ littermates. Aortic-banded Tip60+/− hearts also exhibited significantly decreased apoptosis.

Conclusions/Significance

These findings provide evidence that Tip60 may function in a tumor suppressor pathway(s) to maintain adult cardiomyocytes in replicative senescence.  相似文献   

19.
Das A  Xu H  Wang X  Yau CL  Veazey RS  Pahar B 《PloS one》2011,6(1):e16524

Background

Several B-cell defects arise in HIV infected patients, particularly in patients with chronic infection and high viral load. Loss of memory B cells (CD27+ B cells) in peripheral blood and lymphoid tissues is one of the major B cell dysfunctions in HIV and simian immunodeficiency virus (SIV) infection. Despite several studies, definitive identification of memory B cells based on CD27 surface expression has not been described. Similarly, the rates of cell turnover in different B cell subpopulation from lymphoid and mucosal tissues have not been well documented. In this study, we demonstrate the presence of memory B cell populations and define their distribution, frequency and immunophenotype with regards to activation, proliferation, maturation, and antibody production in normal rhesus macaques from different lymphoid tissues.

Methodology/Principal Findings

Thirteen healthy, uninfected rhesus macaques were selected for this study. CD20+ B cells were isolated from peripheral blood and sorted based on CD27 and CD21 surface markers to define memory B cell population. All the B cell subpopulation was further characterized phenotypically and their cell turnover rates were evaluated in vivo following bromodeoxyuridine (BrdU) inoculation. Double positive (DP) CD21+CD27+ B cells in both peripheral and lymphoid tissues are memory B cells, able to produce antibody by polyclonal activation, and without T cell help. Peripheral and lymphoid DP CD21+CD27+ B cells were also able to become activated and proliferate at higher rates than other B cell subpopulations. Increased turnover of tonsillar memory B cells were identified compared to other tissues examined.

Conclusions/Significance

We suggest that this DP memory B cells play a major role in the immune system and their function and proliferation might have an important role in HIV/SIV mediated B cell dysregulation and pathogenesis.  相似文献   

20.
Xu L  Xu W  Wen Z  Xiong S 《PloS one》2011,6(5):e20282

Background

CD4+CD25+ regulatory T cells (Tregs), a heterogeneous population, were enrichment in tumor mass and played an important role in modulating anti-tumor immunity. Recently, we reported a Treg subset, CCR6+ Tregs but not CCR6Tregs, were enriched in tumor mass and closely related to poor prognosis of breast cancer patients. However, the underlying mechanism remains elusive. Here, we carefully evaluate the enrichment of CCR6+Tregs in tumor mass during progression of breast cancer and explore its possible mechanism.

Methodology/Principal Findings

The frequency of CCR6+Tregs in tumor infiltrating lymphocytes (TILs ) was analyzed at early stage and at late stage of tumor in a murine breast cancer model by FACS respectively. The expansion of CCR6+Tregs and their CCR6 counterpart in tumor mass were determined by BrdU incorporation assay. The effect and its possible mechanism of tumor-resident antigen presenting cells (APCs) on the proliferation of CCR6+Tregs also were evaluated. The role of local expansion of CCR6+Tregs in their enrichment and suppression in vivo also was evaluated in adoptive cell transfer assay. We found that the prior enrichment of CCR6+Tregs but not CCR6Tregs in tumor mass during progression of murine breast cancer, which was dependent on the dominant proliferation of CCR6+ Tregs in situ. Further study demonstrated that tumor-resident DCs triggered the proliferation of CCR6+Treg cells in TGF-β dependent manner. Adoptive transfer of CCR6+Tregs was found to potently inhibit the function of CD8+T cells in vivo, which was dependent on their proliferation and subsequently enrichment in tummor mass.

Conclusions/Significance

Our finding suggested that CCR6+ Tregs, a distinct subset of Tregs, exert its predominant suppressive role in tumor immunity through prior in situ expansion, which might ultimately provide helpful thoughts for the designing of Treg-based immunotherapy for tumor in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号