首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vesicular monoamine transporter 2 (VMAT2) plays a pivotal role in regulating the size of vesicular and cytosolic dopamine (DA) storage pools within the CNS, and can thus influence extracellular DA neurotransmission. Transgenic mice have been generated with a dramatically reduced (by approximately 95%) expression of the VMAT2 gene which, unlike complete knockout lines, survive into adulthood. We compared the pre-synaptic regulation of both impulse-dependent (exocytotic) and carrier-mediated (via reversal of the DA transporter, DAT) DA release in the dorsolateral caudate putamen (CPu) of striatal slices derived from adult homozygous VMAT2 mutant and wild-type mice using fast cyclic voltammetry. Impulse-dependent DA release, evoked by a single electrical pulse, was lower in homozygous (116 nm) than wild-type mice (351 nm) indicating smaller vesicular DA stores, an observation supported by the evanescent effect of amfonelic acid (300 nm) in homozygous mice. Amphetamine (2 microm) increased extracellular DA via DAT reversal in both wild-type (by 459 nm) and VMAT2 mutant (by 168 nm, p < 0.01 vs. wild-type) mice. In both cases, the effect was blocked by the DAT inhibitor GBR12935 (1 microm). Simultaneously, amphetamine decreased impulse-dependent DA release, albeit less in homozygous (by 55%) than in wild-type (by 78%) mice. In wild-types, this decrement was largely reversed by GBR12935 but not by the D2/D3 autoreceptor antagonist (-)sulpiride (1 microm). Conversely, in homozygous VMAT2 mutant mice, it was attenuated by (-)sulpiride but not GBR12935. The D2/D3 receptor agonist quinpirole inhibited impulse-dependent DA release with a lower EC50 value in homozygous mice (12 nm) compared with wild-types (34 nm), indicating the compensatory presence of functionally supersensitive release-regulating autoreceptors. However, analysis of DA reuptake kinetics obtained in the absence and presence of DAT blockade (by cocaine and amfonelic acid) revealed only minor differences in DAT functionality. These results demonstrate that impaired vesicular DA storage constrains extracellular DA levels in the dorsolateral CPu whether induced by either impulse-dependent or carrier-mediated mechanisms and that the relative importance of the DAT and terminal autoreceptors as control mechanisms in the actions of amphetamine are reversed in VMAT2 mutant mice.  相似文献   

2.
Our aim was to investigate whether a defect in vesicular monoamine transporter-2 (VMAT2) activities would affect dopaminergic cell functions or not. We examined mesencephalon dopaminergic cultures prepared from VMAT2 wild-type, heterozygous or homozygous knockout (KO) 14-day-old mouse fetuses to determine the number of tyrosine hydroxylase (TH)-positive cells and dopamine transporter activity. The number of TH-positive cells remained unchanged in the VMAT2-KO cultures. Of interest, the dopamine transporter activity in the homozygous cells was significantly decreased, but not in the heterozygous cells, suggesting that complete deletion of VMAT2 inhibited dopamine transporter function. Furthermore, dopamine transporter activity was prominently decreased in the synaptosomal fraction of neonatal homozygous VMAT2-KO mice compared with that of wild-type/heterozygous VMAT2-KO ones, indicating that VMAT2 activity might be one of the factors regulating dopamine transporter activities. To test this possibility, we used reserpine, a VMAT2 inhibitor. Reserpine (1muM) decreased dopamine transporter activity (approx. 50%) in wild-type and heterozygous VMAT2-KO cultures but not in homozygous ones, indicating that blockade of VMAT2 activity reduced dopamine transporter activity. To investigate possible mechanisms underlying the decreased dopamine transporter activity in VMAT2-KO mice, we measured dopamine transporter activities after 24-48h exposure of primary cultures of mesencephalic neurons to dopamine receptor antagonists, PKC inhibitor, PI(3)K inhibitor, and l-DOPA. Among these drugs, l-DOPA slightly reduced the dopamine transporter activities of all genotypes, but the other drugs could not. Since the ratios of reduction in dopamine transporter activity of each genotype treated with l-DOPA were similar, substrate inhibition of dopamine transporters was not the main mechanism underlying the reduced dopamine transporter activity due to genetic deletion of VMAT2. Our results demonstrate that genetic deletion of VMAT2 did not induce immediate cell death but did markedly inhibit dopamine transporter activity.  相似文献   

3.
VMAT2 and dopamine neuron loss in a primate model of Parkinson's disease   总被引:2,自引:0,他引:2  
We used positron emission tomography (PET) to measure the earliest change in dopaminergic synapses and glial cell markers in a chronic, low-dose MPTP non-human primate model of Parkinson's disease (PD). In vivo levels of dopamine transporters (DAT), vesicular monoamine transporter-type 2 (VMAT2), amphetamine-induced dopamine release (AMPH-DAR), D2-dopamine receptors (D2R) and translocator protein 18 kDa (TSPO) were measured longitudinally in the striatum of MPTP-treated animals. We report an early (2 months) decrease (46%) of striatal VMAT2 in asymptomatic MPTP animals that preceded changes in DAT, D2R, and AMPH-DAR and was associated with increased TSPO levels indicative of a glial response. Subsequent PET studies showed progressive loss of all pre-synaptic dopamine markers in the striatum with expression of parkinsonism. However, glial cell activation did not track disease progression. These findings indicate that decreased VMAT2 is a key pathogenic event that precedes nigrostriatal dopamine neuron degeneration. The loss of VMAT2 may result from an association with α-synuclein aggregation induced by oxidative stress. Disruption of dopamine sequestration by reducing VMAT2 is an early pathogenic event in the dopamine neuron degeneration that occurs in the MPTP non-human primate model of PD. Genetic or environmental factors that decrease VMAT2 function may be important determinants of PD.  相似文献   

4.
Vesicular monoamine transporter 2 (VMAT2) is expressed in pancreatic beta cells and has recently been proposed as a target for measurement of beta cell mass in vivo. We questioned, (1) What proportion of beta cells express VMAT2? (2) Is VMAT2 expressed by other pancreatic endocrine or non-endocrine cells? (3) Is the relationship between VMAT2 and insulin expression disturbed in type 1 (T1DM) or type 2 diabetes (T2DM)? Human pancreas (7 non-diabetics, 5 T2DM, 10 T1DM) was immunostained for insulin, VMAT2 and other pancreatic hormones. Most beta cells expressed VMAT2. VMAT2 expression was not changed by the presence of diabetes. In tail of pancreas VMAT2 immunostaining closely correlated with insulin staining. However, VMAT2 was also expressed in some pancreatic polypeptide (PP) cells. Although VMAT2 was not excluded as a target for beta cell mass measurement, expression of VMAT2 in PP cells predicts residual VMAT2 expression in human pancreas even in the absence of beta cells.  相似文献   

5.
The uptake of monoamines into the secretory granules of monoamine-storing neuroendocrine cells is mediated by vesicular monoamine transporter protein 1 or 2 (VMAT1 or VMAT2). This study analyzed the expression of VMAT1 and VMAT2 in endocrine cells of normal human and monkey pancreas. The expression of VMAT1 and VMAT2 was also examined in infants with hyperinsulinemic hypoglycemia and in adults with pancreatic endocrine tumors (PETs). Using immunohistochemistry (IHC) and in situ hybridization (ISH), we demonstrated the mutually exclusive expression of VMAT1 in endocrine cells of the duct system and of VMAT2 in many cells of the islets of Langerhans. By confocal laser scanning microscopy, VMAT1-positive cells were identified as enterochromaffin (EC) cells and VMAT2-positive cells as beta-cells. In PETs, VMAT1 was found exclusively in all serotonin-containing tumors. In contrast, VMAT2 expression was lost in many insulinomas, independent of their biological behavior. VMAT2 was expressed by some non-insulin-producing tumors. The mutually exclusive expression of VMAT1 in EC cells and of VMAT2 in beta-cells suggests that both cell types store monoamines. Monoamine storage mediated by VMAT1 in EC cells is apparently maintained in EC cell tumors. In contrast, many insulinomas appear to lose their ability to accumulate monoamines via VMAT2.  相似文献   

6.
The vesicle monoamine transporter (VMAT2) concentrates monoamine neurotransmitter into synaptic vesicles. Photoaffinity labeling, chimera analysis, and mutagenesis have identified functionally important amino acids and provided some information regarding structure and ligand binding sites. To extend these studies, we engineered functional human VMAT2 constructs with reduced numbers of cysteines. Subsets of cysteines were discovered, which restore function to an inactive cysteine-less human VMAT2. Replacement of three transmembrane (TM) cysteines together (net removal/replacement of three atoms) significantly enhanced monoamine transport. Cysteine modification studies involving single and combination cysteine mutants with methanethiosulfonate ethylamine revealed that [(3)H]dihydrotetrabenazine binding is > 90% inhibited by modification of two sets of cysteines. The primary target (responsible for approximately 80% of inhibition) is Cys(439) in TM 11. The secondary target (responsible for approximately 20% of inhibition) is one or more of the four non-TM cysteines. [(3)H]Dihydrotetrabenazine protects against modification of Cys(439) by a 10,000-fold molar excess of methanethiosulfonate ethylamine, demonstrating that Cys(439) is either at the tetrabenazine binding site, or conformationally linked to tetrabenazine binding. Supporting a direct effect, the position of tetrabenazine-protectable Cys 439 is consistent with previous mutagenesis, chimera, and photoaffinity labeling data, demonstrating involvement of TM 10-12 in a tetrabenazine binding domain.  相似文献   

7.
Dopamine is a catecholamine neurotransmitter necessary for motor functions. Its deficiency has been observed in several neurological disorders, but replacement of endogenous dopamine via oral or parenteral delivery is limited by poor absorption, rapid metabolism and the inability of dopamine to cross the blood-brain barrier. The intranasal administration of dopamine, however, has resulted in improved central nervous system (CNS) bioavailability compared to that obtained following intravenous delivery. Portions of the nasal mucosa are innervated by olfactory neurons expressing dopamine transporter (DAT) which is responsible for the uptake of dopamine within the central nervous system. The objective of these studies was to study the role of DAT in dopamine transport across the bovine olfactory and nasal respiratory mucosa. Western blotting studies demonstrated the expression of DAT and immunohistochemistry revealed its epithelial and submucosal localization within the nasal mucosa. Bidirectional transport studies over a 0.1-1 mM dopamine concentration range were carried out in the mucosal-submucosal and submucosal-mucosal directions to quantify DAT activity, and additional transport studies investigating the ability of GBR 12909, a DAT inhibitor, to decrease dopamine transport were conducted. Dopamine transport in the mucosal-submucosal direction was saturable and was decreased in the presence of GBR 12909. These studies demonstrate the activity of DAT in the nasal mucosa and provide evidence that DAT-mediated dopamine uptake plays a role in the absorption and distribution of dopamine following intranasal administration.  相似文献   

8.
In the search of new probes for in vivo brain imaging of vesicular monoamine transporter type 2 (VMAT2), we have developed an efficient synthesis of a novel series of 3-alkyl-dihydrotetrabenazine (DTBZ) derivatives. The affinity of VMAT2 was evaluated by an in vitro inhibitory binding assay using [125I]-iodovinyl-TBZ or [18F](+)-FP-DTBZ as radioligands in rat striatal tissue homogenates. New DTBZ derivatives exhibited moderate to good binding affinity to VMAT2. Among these new ligands, compound 4b showed the best affinity for VMAT2 (Ki = 5.98 nM) and may be a useful lead compound for future structure-activity studies.  相似文献   

9.
Uptake of monoamines into secretory granules is mediated by the vesicular monoamine transporters VMAT1 and VMAT2. In this study, we analyzed their expression in inflammatory and hematopoietic cells and in patients suffering from systemic mastocytosis (SM) and chronic myelogenous leukemia (CML). Normal human and monkey tissue specimens and tissues from patients suffering from SM and CML were analyzed by means of immunohistochemistry, radioactive in situ hybridization, real time RT-PCR, double fluorescence confocal laser scanning microscopy, and immunoelectron microscopy. In normal tissue specimens, VMAT2, but not VMAT1, was expressed in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells. Further hematopoietic and lymphoid cells showed no expression of VMATs. VMAT2 was expressed in all types of SM, as indicated by coexpression with the mast cell marker tryptase. In CML, VMAT2 expression was retained in neoplastic megakaryocytes and basophil granulocytes. In conclusion, the identification of VMAT2 in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells provides evidence that these cells possess molecular mechanisms for monoamine storage and handling. VMAT2 identifies normal and neoplastic mast cells, megakaryocytes, and basophil granulocytes and may therefore become a valuable tool for the diagnosis of mastocytosis and malignant systemic diseases involving megakaryocytes and basophil granulocytes.  相似文献   

10.
The vesicular monoamine transporters (VMATs) are essential proteins, involved in the storage of monoamines in the central nervous system and in endocrine cells, in a process that involves exchange of 2H+ with one substrate molecule. The VMATs interact with various native substrates and clinically relevant drugs and display the pharmacological profile of multidrug transporters. Vesicular transporters suffer from a lack of biochemical and structural data due to the difficulties in their expression. In this work we present the high-level expression of rat VMAT2 (rVMAT2) in a stable a human embryonic kidney cell line (HEK293), generated using the resistance to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) conferred by the protein. In addition, we describe novel procedures for the solubilization and purification of active protein, and its reconstitution into proteoliposomes. The partially purified protein in detergent binds the inhibitor tetrabenazine and, after reconstitution, displays high levels of µH+-driven electrogenic transport of serotonin. The reconstituted purified rVMAT2 has wild-type affinity for serotonin, and its turnover rate is 0.4 substrate molecule/s. membrane protein; ion-coupled transporters; neurotransmitter storage; monoamines  相似文献   

11.
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.  相似文献   

12.
In our continued exploration of trishomocubane derivatives with central nervous system (CNS) activity, N-arylalkyl-8-aminopentacyclo[5.4.0.02,6.03,10.05,9]undecanes (10-13) displaying affinity for the sigma (σ) receptor were also found, in several cases, to interact with the dopamine transporter (DAT). Compound 12 was identified as the first trishomocubane-derived high affinity DAT ligand (Ki = 1.2 nM), with greater than 8300-fold selectivity over the monoamine transporters NET and SERT, and only low to moderate affinity for σ1 and σ2 receptors.  相似文献   

13.
Central heterocyclic ring size reduction from piperidinyl to pyrrolidinyl in the vesicular monoamine transporter-2 (VMAT2) inhibitor GZ-793A and its analogs resulted in novel N-propane-1,2(R)-diol analogs 11a–i. These compounds were evaluated for their affinity for the dihydrotetrabenazine (DTBZ) binding site on VMAT2 and for their ability to inhibit vesicular dopamine (DA) uptake. The 4-difluoromethoxyphenethyl analog 11f was the most potent inhibitor of [3H]-DTBZ binding (Ki = 560 nM), with 15-fold greater affinity for this site than GZ-793A (Ki = 8.29 μM). Analog 11f also showed similar potency of inhibition of [3H]-DA uptake into vesicles (Ki = 45 nM) compared to that for GZ-793A (Ki = 29 nM). Thus, 11f represents a new water-soluble inhibitor of VMAT function.  相似文献   

14.
Thiriot DS  Sievert MK  Ruoho AE 《Biochemistry》2002,41(20):6346-6353
The vesicle monoamine transporter (VMAT2) concentrates monoamine neurotransmitter into synaptic vesicles. To obtain structural information regarding this large membrane protein by analysis of disulfide bonds and other intramolecular cross-links, we engineered a strategic thrombin cleavage site into deglycosylated, HA-tagged human VMAT2. Insertion of this protease site did not disrupt ligand binding or serotonin transport. Thrombin cleavage at an engineered site in the predicted cytoplasmic loop between transmembrane (TM) domains 6 and 7 (loop 6/7) was rapid and quantitative in the absence of any detergent. The loop 6/7 thrombin site allowed assessment of an intramolecular disulfide bond between the N- and C-terminal halves of the transporter. Consistent with this hypothesis, after quantitative loop 6/7 thrombin cleavage, in the absence of reducing agent, VMAT2 migrated on SDS-polyacrylamide gels as a full-length transporter. Addition of dithiothreitol resulted in complete conversion from full-length to thrombin-cleaved size, demonstrating a DTT-reversible covalent bond. The identity of the disulfide-bound cysteine pair was suggested by the observation that replacement of Cys 126 or Cys 333 with serine both reduced [(3)H]serotonin transport. Replacement of either Cys 126 or Cys 333 was found to eliminate the DTT-reversible intramolecular covalent bond. We conclude that human VMAT2 Cys 126 in loop 1/2 and Cys 333 in loop 7/8 form a disulfide bond which contributes to efficient monoamine transport.  相似文献   

15.
16.
The dopamine transporter (DAT) plays a pivotal role in the regulation of dopamine neurotransmission, and is involved in a number of physiological functions and brain disorders. Furthermore the DAT analysis by molecular imaging techniques is a useful tool for the diagnosis and follow up treatment of diseases involving the DAT. In order to predict the affinity of new derivatives for the DAT, different QSAR molecular modeling models based on cocaine were compared. We have evaluated in these models tropane derivatives synthesized with original synthons which coupled properties of both fluorine and iodine atoms. One compound showed a high in vitro affinity and selectivity for the DAT (K(i)=0.87±0.04 nM). This compound should be radiolabeled with radioiodine for further investigations by SPECT.  相似文献   

17.
Monoamine storage in secretory granules is mediated by the vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2). The aim of our study was to identify monoamine-handling normal and neoplastic inflammatory cells in the skin by their expression of VMAT1 and VMAT2. Normal skin from various parts of the body, as well as 21 cases of cutaneous mastocytosis and 10 cases of cutaneous Langerhans cell histiocytosis were analyzed by immunohistochemistry, radioactive in situ hybridization, and double-fluorescence confocal microscopy. VMAT2-positive cells in the subepidermal layer were identified as mast cells by their expression of tryptase. Neoplastic mast cells in all cases of cutaneous mastocytosis retained their VMAT2 positivity. The intraepidermal VMAT2-expressing cells were identified as Langerhans cells by their CD1a positivity. VMAT2 was absent from Langerhans cell histiocytosis. VMAT2 is an excellent marker for normal and neoplastic mast cells. The expression of VMAT2 demonstrates the capacity of mast cells for monoamine storage and handling. The presence of VMAT2 in epidermal Langerhans cells revealed a previously unrecognized monoamine-handling phenotype of these cells and indicates possible involvement of amine storage and release associated with antigen presentation. Absence of VMAT2 in neoplastic Langerhans cells indicates a loss of monoamine handling capacity of these cells during tumorigenesis.  相似文献   

18.
19.
Variations in the neurotransmitter content of secretory vesicles enable neurons to adapt to network changes. Vesicular content may be modulated by vesicle-associated Go(2), which down-regulates the activity of the vesicular monoamine transmitter transporters VMAT1 in neuroendocrine cells and VMAT2 in neurons. Blood platelets resemble serotonergic neurons with respect to transmitter storage and release. In streptolysin O-permeabilized platelets, VMAT2 activity is also down-regulated by the G protein activator guanosine 5'-(beta(i)gamma-imido)triphosphate (GMppNp). Using serotonin-depleted platelets from peripheral tryptophan hydroxylase knockout (Tph1-/-) mice, we show here that the vesicular filling initiates the G protein-mediated down-regulation of VMAT2 activity. GMppNp did not influence VMAT2 activity in naive platelets from Tph1-/- mice. GMppNp-mediated inhibition could be reconstituted, however, when preloading Tph1-/- platelets with serotonin or noradrenaline. Galpha(q) mediates the down-regulation of VMAT2 activity as revealed from uptake studies performed with platelets from Galpha(q) deletion mutants. Serotonergic, noradrenergic, as well as thromboxane A(2) receptors are not directly involved in the down-regulation of VMAT2 activity. It is concluded that in platelets the vesicle itself regulates transmitter transporter activity via its content and vesicle-associated Galpha(q).  相似文献   

20.
The human dopamine transporter (DAT1) gene is localized to chromosome 5p15.3 by in situ hybridization and PCR amplification of rodent somatic cell hybrid DNA. Analysis of a 40-bp repeat in the 3' untranslated region of the message revealed variable numbers of the repeat ranging from 3 to 11 copies. These results will aid in the investigation of a role for this gene in genetic disorders of the dopaminergic system in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号