共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics 下载免费PDF全文
Some highly pathogenic H5N1, H7N9, and H10N8 isolated from China carried six internal genes from H9N2 avian influenza viruses (AIV) and the key amino acids at 627 in PB2 of these viruses had mutated to K. To investigate the mechanism of increased pathogenicity for H9N2 AIV PB2 627K, we analyzed the difference in mouse lung proteins expression response to PB2 K627E. By iTRAQ method, we found that the mutated K627E contributed to a set of differentially expressed lung proteins, including five upregulated proteins and nine downregulated proteins at 12 h postinfection; ten upregulated proteins and 25 downregulated proteins at 72 h postinfection. These proteins were chiefly involved within the cytoskeleton and motor proteins, antiviral proteins, regulation of glucocorticoids signal‐associated proteins, pro‐ and anti‐inflammatory proteins. Alteration of moesin, FKBP4, Hsp70, ezrin, and pulmonary surfactant protein A (sp‐A) may play important roles in increasing virulence and decreasing lungs antiviral response. Further, three upregulated proteins (moesin, ezrin, and sp‐A) caused by PB2 K627E were also confirmed in A549 cells. Moreover, overexpression of sp‐A in A549 inhibited virus replication and downregulation promoted virus replication. In this study, sp‐A as a potential virulence determinant associated H9N2 AIV PB2 E627K mutation was identified using comparative proteomics. 相似文献
2.
Kaituo Liu Yaqian Guo Huafen Zheng Zhuxing Ji Miao Cai Ruyi Gao Pinghu Zhang Xiaowen Liu Xiulong Xu Xiaoquan Wang Xiufan Liu 《中国病毒学》2023,38(1):47-55
H9N2 avian influenza viruses (AIVs) circulate globally in poultry and have become the dominant AIV subtype in China in recent years. Previously, we demonstrated that the H9N2 virus (A/chicken/Eastern China/SDKD1/2015) naturally harbors a mammalian-adaptive molecular factor (627K) in the PB2 protein and is weakly pathogenic in mice. Here, we focused on new markers for virulence in mammals. A mouse-adapted H9N2 virus was serially passaged in mice by infecting their lungs. As expected, infected mice showed clinical symptoms and died at passage six. A comparison between the wild-type and mouse-adapted virus sequences identified amino acid substitutions in the hemagglutinin (HA) protein. H9N2 viruses with the T187P ?+ ?M227L double mutation exhibited an increased affinity to human-type (SAα2,6Gal) receptors and significantly enhanced viral attachment to mouse lung tissues, which contributed to enhancing viral replication and virulence in mice. Additionally, HA with the T187P ?+ ?M227L mutation enabled H9N2 viral transmission in guinea pigs via direct contact. AIV pathogenicity in mice is a polygenic trait. Our results demonstrated that these HA mutations might be combined with PB2-627K to significantly increase H9N2 virulence in mice, and this enhanced virulence was achieved in other H9N2 AIVs by generating the same combination of mutations. In summary, our study identified novel key elements in the HA protein that are required for H9N2 pathogenicity in mice and provided valuable insights into pandemic preparedness against emerging H9N2 strains. 相似文献
3.
Tada T Suzuki K Sakurai Y Kubo M Okada H Itoh T Tsukamoto K 《Journal of virology》2011,85(4):1834-1846
The molecular basis of pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in chickens remains largely unknown. H5N1 A/chicken/Yamaguchi/7/2004 virus (CkYM7) replicates rapidly in macrophages and vascular endothelial cells in chickens, causing sudden death without fever or gross lesions, while H5N1 A/duck/Yokohama/aq10/2003 virus (DkYK10) induces high fever, severe gross lesions, and a prolonged time to death, despite the 98% amino acid identity between the two viruses. To explore the molecular basis of this difference in pathogenicity, a series of eight single-gene reassortant viruses from these HPAI viruses were compared for pathogenicity in chickens. Two reassortants possessing the NP or PB2 gene from DkYK10 in the CkYM7 background reduced pathogenicity compared to other reassortants or CkYM7. Inversely, reassortants possessing the NP or PB2 gene of CkYM7 in the DkYK10 background (rgDkYK-PB2(Ck), rgDkYK-NP(Ck)) replicated quickly and reached higher titers than DkYK10, accompanied by more rapid and frequent apoptosis of macrophages. The rgDkYK-NP(Ck) and rgDkYK-PB2(Ck) reassortants also replicated more rapidly in chicken embryo fibroblasts (CEFs) than did rgDkYK10, but replication of these viruses was similar to that of CkYM7 and DkYK10 in duck embryo fibroblasts. A comparison of pathogenicities of seven rgDkYK10 mutants with a single amino acid substitution in NP(Dk) demonstrated that valine at position 105 in the NP(Ck) was responsible for the increased pathogenicity in chickens. NP(Ck), NP(105V), and PB2(Ck) enhanced the polymerase activity of DkYK10 in CEFs. These results indicate that both NP and PB2 contribute to the high pathogenicity of the H5N1 HPAI viruses in chickens, and valine at position 105 of NP may be one of the determinants for adaptation of avian influenza viruses from ducks to chickens. 相似文献
4.
Suguitan AL Matsuoka Y Lau YF Santos CP Vogel L Cheng LI Orandle M Subbarao K 《Journal of virology》2012,86(5):2706-2714
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates. 相似文献
5.
目的利用A/H6N1亚型禽流感病毒的反向遗传平台,评估PB2 E627K对A/H6N1亚型禽流感病毒的致病性,探究A/H6N1流感病毒的致病性分子基础。方法通过A/H6N1亚型禽流感病毒A/Mallard/San-Jiang/275/2007株反向遗传操作系统和点突变技术拯救病毒rA/H6N1和PB2 E627K位点发生突变的rA/H6N1-627,两株拯救病毒分别以101EID50~106EID50的攻毒剂量人工感染BALB/c小鼠,通过体重变化、死亡率、病毒滴定等方面进行致病性分析。结果成功构建A/H6N1亚型禽流感病毒的反向遗传平台,rA/H6N1的8个基因片段完全源于A/H6N1的基因组,核苷酸序列及生物学特性与A/H6N1完全一致。rA/H6N1能够人工感染BALB/c小鼠,但不致死,对BALB/c小鼠呈现低致病性(MLD50>106.5EID50),病毒在小鼠体内的分布情况及各个脏器中的病毒滴度与A/H6N1保持一致;rA/H6N1-627能感染小鼠,引起小鼠体重下降,但不能引起所有106EID50组小鼠死亡,病毒能在小鼠的肺脏和脑部进行增殖。结论实验结果表明,在H5N1禽流感中发挥重要作用的PB2-E627K位点并非A/H6N1流感病毒的毒力决定因子。A/H6N1流感病毒致病性的分子基础还有待继续研究,该反向遗传操作系统和点突变技术的建立为研究该亚型流感病毒致病机制、传播机制及病毒基因功能奠定了基础,同时也为A/H6N1亚型禽流感病毒新型疫苗的研制开辟了新途径。 相似文献
6.
Schmolke M Manicassamy B Pena L Sutton T Hai R Varga ZT Hale BG Steel J Pérez DR García-Sastre A 《PLoS pathogens》2011,7(8):e1002186
Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20(th) century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism. 相似文献
7.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose. 相似文献
8.
Wasilenko JL Lee CW Sarmento L Spackman E Kapczynski DR Suarez DL Pantin-Jackwood MJ 《Journal of virology》2008,82(9):4544-4553
The virulence determinants for highly pathogenic avian influenza viruses (AIVs) are considered multigenic, although the best characterized virulence factor is the hemagglutinin (HA) cleavage site. The capability of influenza viruses to reassort gene segments is one potential way for new viruses to emerge with different virulence characteristics. To evaluate the role of other gene segments in virulence, we used reverse genetics to generate two H5N1 recombinant viruses with differing pathogenicity in chickens. Single-gene reassortants were used to determine which viral genes contribute to the altered virulence. Exchange of the PB1, PB2, and NP genes impacted replication of the reassortant viruses while also affecting the expression of specific host genes. Disruption of the parental virus' functional polymerase complexes by exchanging PB1 or PB2 genes decreased viral replication in tissues and consequently the pathogenicity of the viruses. In contrast, exchanging the NP gene greatly increased viral replication and expanded tissue tropism, thus resulting in decreased mean death times. Infection with the NP reassortant virus also resulted in the upregulation of gamma interferon and inducible nitric oxide synthase gene expression. In addition to the impact of PB1, PB2, and NP on viral replication, the HA, NS, and M genes also contributed to the pathogenesis of the reassortant viruses. While the pathogenesis of AIVs in chickens is clearly dependent on the interaction of multiple gene products, we have shown that single-gene reassortment events are sufficient to alter the virulence of AIVs in chickens. 相似文献
9.
Ling Tao JianJun Chen Jin Meng Yao Chen Hongxia Li Yan Liu Zhenhua Zheng Hanzhong Wang 《中国病毒学》2013,28(3):136-145
Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses. 相似文献
10.
以H5N2亚型禽流感病毒毒株血凝素蛋白裂解位点碱性氨基酸为研究对象,对其密码子偏好性和对应mRNA序列的折叠二级结构特点进行研究和分析。旨在探讨裂解位点氨基酸对应mRNA核苷酸片段的二级结构与病毒致病力的关系,希望能对禽流感病毒的研究提供一些基础性信息。将mRNA样本按照序列等步长递增的方法,用RNAstructure 4.1程序预测这些样本的动态延伸折叠二级结构。序列和结构的分析结果:裂解位点的碱性氨基酸对富含腺嘌呤的密码子有强烈偏好;与碱性氨基酸对应的mRNA片段上的核苷酸主要位于折叠二级结构的单链环区,少数位于配对螺旋区。结果表明:裂解位点氨基酸对应的mRNA核苷酸形成发夹端环的大小与其碱性氨基酸的多少具有正相关性。 相似文献
11.
The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks 总被引:3,自引:0,他引:3
Song J Feng H Xu J Zhao D Shi J Li Y Deng G Jiang Y Li X Zhu P Guan Y Bu Z Kawaoka Y Chen H 《Journal of virology》2011,85(5):2180-2188
During their circulation in nature, H5N1 avian influenza viruses (AIVs) have acquired the ability to kill their natural hosts, wild birds and ducks. The genetic determinants for this increased virulence are largely unknown. In this study, we compared two genetically similar H5N1 AIVs, A/duck/Hubei/49/05 (DK/49) and A/goose/Hubei/65/05 (GS/65), that are lethal for chickens but differ in their virulence levels in ducks. To explore the genetic basis for this difference in virulence, we generated a series of reassortants and mutants of these two viruses. The virulence of the reassortant bearing the PA gene from DK/49 in the GS/65 background increased 10(5)-fold relative to that of the GS/65 virus. Substitution of two amino acids, S224P and N383D, in PA contributed to the highly virulent phenotype. The amino acid 224P in PA increased the replication of the virus in duck embryo fibroblasts, and the amino acid 383D in PA increased the polymerase activity in duck embryo fibroblasts and delayed the accumulation of the PA and PB1 polymerase subunits in the nucleus of virus-infected cells. Our results provide strong evidence that the polymerase PA subunit is a virulence factor for H5N1 AIVs in ducks. 相似文献
12.
While repeated infection of humans and enhanced replication and transmission in mice has attracted more attention to it, the pathogenesis of H9N2 virus was less known in mice. PB(2) residue 627 as the virulent determinant of H5N1 virus is associated with systemic infection and impaired TCR activation, but the impact of this position in H9N2 virus on the host immune response has not been evaluated. In this study, we quantified the cellular immune response to infection in the mouse lung and demonstrate that V(K627) and rTs(E627K) infection caused a significant reduction in the numbers of T cells and inflammatory cells (Macrophage, Neutrophils, Dendritic cells) compared to mice infected with rV(K627E) and Ts(E627). Further, we discovered (i) a high level of thymocyte apoptosis resulted in impaired T cell development, which led to the reduced amount of mature T cells into lung, and (ii) the reduced inflammatory cells entering into lung was attributed to the diminished levels in pro-inflammatory cytokines and chemokines. Thereafter, we recognized that higher GCs level in plasma induced by V(K627) and rTs(E627K) infection was associated with the increased apoptosis in thymus and the reduced pro-inflammatory cytokines and chemokines levels in lung. These data demonstrated that V(K627) and rTs(E627K) infection contributing to higher GCs level would decrease the magnitude of antiviral response in lung, which may be offered as a novel mechanism of enhanced pathogenicity for H9N2 AIV. 相似文献
13.
Zhang Y Sun Y Sun H Pu J Bi Y Shi Y Lu X Li J Zhu Q Gao GF Yang H Liu J 《Journal of virology》2012,86(12):6924-6931
H5 influenza viruses containing a motif of multiple basic amino acids at the hemagglutinin (HA) cleavage site (HACS) are highly pathogenic in chicken but display different virulence phenotypes in mammals. Previous studies have shown that multiple basic amino acids of H5N1 influenza virus are a prerequisite for lethality in mice. However, it remains unclear which specific residue at the cleavage site affects the pathogenicity of H5N1 in mammals. A comprehensive genetic analysis of the H5N1 HACS showed that residues at P6 (position 325, by H3 numbering) were the most polymorphic, including serine (S), arginine (R), deletion (*), glycine (G), and isoleucine (I). To determine whether a single residue at P6 could affect virulence, we introduced different mutations at P6 of an avirulent clade 7 H5N1 strain, rg325G, by reverse genetics. Among the recombinant viruses, the rg325S virus showed the highest cleavage efficiency in vitro. All these viruses were highly pathogenic in chicken but exhibited different virulences in mice. The rg325S virus exhibited the highest pathogenicity in terms of unrestricted organ tropism and neurovirulence. Remarkably, the HA-325S substitution dramatically increased the pathogenicity of H5N1 viruses of other clades, including clades 2.2, 2.3.2, and 2.3.4, indicating that this residue impacts genetically divergent H5N1 viruses. An analysis of predicted structures containing these mutations showed that the cleavage site loop with 325S was the most exposed, which might be responsible for the efficient cleavage and high virulence. Our results demonstrate that an amino acid substitution at the P6 cleavage site alone could modulate the virulence of H5N1 in mice. 相似文献
14.
Influenza A viruses of subtype H9N2 are wide spread among poultry
and other mammalian species. Crossing the species barrier
from poultry to human occurred in recent years creating a
pandemic of H9N2 virus. It is known that the pathogenicity
of H9N2 is lower than H5N1. Nonetheless, it is important to
establish the molecular functions of H9N2 viral proteins. We
studied mutations in the polymerase protein PB2 of H9N2 from
different strains and compared it with the highly pathogenic
H5N1. The mutation M294T was found to be important in the
N-myristoylation domain of Ck/UP/2573/India/04(H9N2)
isolate. Prediction of secondary structures and PROSITE
motif assignments were performed for PB2 to gain functional
insight. Subsequently, the effect of mutations in secondary
structures among strains is discussed. 相似文献
15.
Background
Avian influenza H5N1 virus is highly pathogenic partially because its H5 hemagglutinin contains a polybasic cleavage site that can be processed by proteases in multiple organs.Methods
Monoclonal antibodies (mAb) specific to the synthetic peptide of hemagglutinin polybasic cleavage site of H5N1 virus were raised and tested for their neutralizing potential.Results
Purified mAb showed suppression of H5N1 pseudovirus infection on Madin-Darby Canine Kidney (MDCK) cells but the efficacy was less than 50%. Since those mAb are specific to the intact uncut polybasic cleavage site of hemagglutinin, their efficacy depends on the extent of hemagglutinin cleavage on the viral surface.Conclusions
Proteolytic analysis suggests the low efficacy associated with those mAb may be due to proteolytic cleavage already present on the majority of hemagglutinin prior to the infection of virus. 相似文献16.
The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets 总被引:1,自引:0,他引:1
Schrauwen EJ Herfst S Leijten LM van Run P Bestebroer TM Linster M Bodewes R Kreijtz JH Rimmelzwaan GF Osterhaus AD Fouchier RA Kuiken T van Riel D 《Journal of virology》2012,86(7):3975-3984
The route by which highly pathogenic avian influenza (HPAI) H5N1 virus spreads systemically, including the central nervous system (CNS), is largely unknown in mammals. Especially, the olfactory route, which could be a route of entry into the CNS, has not been studied in detail. Although the multibasic cleavage site (MBCS) in the hemagglutinin (HA) of HPAI H5N1 viruses is a major determinant of systemic spread in poultry, the association between the MBCS and systemic spread in mammals is less clear. Here we determined the virus distribution of HPAI H5N1 virus in ferrets in time and space-including along the olfactory route-and the role of the MBCS in systemic replication. Intranasal inoculation with wild-type H5N1 virus revealed extensive replication in the olfactory mucosa, from which it spread to the olfactory bulb and the rest of the CNS, including the cerebrospinal fluid (CSF). Virus spread to the heart, liver, pancreas, and colon was also detected, indicating hematogenous spread. Ferrets inoculated intranasally with H5N1 virus lacking an MBCS demonstrated respiratory tract infection only. In conclusion, HPAI H5N1 virus can spread systemically via two different routes, olfactory and hematogenous, in ferrets. This systemic spread was dependent on the presence of the MBCS in HA. 相似文献
17.
Lam TT Hon CC Lemey P Pybus OG Shi M Tun HM Li J Jiang J Holmes EC Leung FC 《Molecular ecology》2012,21(12):3062-3077
Understanding how pathogens invade and become established in novel host populations is central to the ecology and evolution of infectious disease. Influenza viruses provide unique opportunities to study these processes in nature because of their rapid evolution, extensive surveillance, large data sets and propensity to jump species boundaries. H5N1 highly pathogenic avian influenza virus (HPAIV) is a major animal pathogen and public health threat. The virus is of particular importance in Indonesia, causing severe outbreaks among poultry and sporadic human infections since 2003. However, little is known about how H5N1 HPAIV emerged and established in Indonesia. To address these questions, we analysed Indonesian H5N1 HPAIV gene sequences isolated during 2003-2007. We find that the virus originated from a single introduction into East Java between November 2002 and October 2003. This invasion was characterized by an initially rapid burst of viral genetic diversity followed by a steady rate of lineage replacement and the maintenance of genetic diversity. Several antigenic sites in the haemagglutinin gene were subject to positive selection during the early phase, suggesting that host-immune-driven selection played a role in host adaptation and expansion. Phylogeographic analyses show that after the initial invasion of H5N1, genetic variants moved both eastwards and westwards across Java, possibly involving long-distance transportation by humans. The phylodynamics we uncover share similarities with other recently studied viral invasions, thereby shedding light on the ecological and evolutionary processes that determine disease emergence in a new geographical region. 相似文献
18.
由H5N1流感病毒引起的高致病性禽流感,在禽类之间广泛传播。当人类接触这些禽类时,可能会被感染并产生严重的呼吸道症状,且死亡率高达60%。血凝素(hemagglutinin,HA)是H5N1病毒中和抗体的主要抗原,为了便于对病毒的HA突变进行研究,根据HA遗传基因的差异远近,所有的H5病毒株都被划分在20个分支内。对于H5N1病毒进化的研究在禽流感疫苗的研制、禽流感大流行的预防等方面均具有重要意义。现对禽流感、H5N1病毒特征、血凝素的结构功能、H5N1病毒的分支以及病毒进化的研究进行概述。 相似文献
19.
H9N2 influenza viruses have been circulating worldwide in multiple avian species and have repeatedly infected humans to cause typical disease. The continued avian-to-human interspecies transmission of H9N2 viruses raises concerns about the possibility of viral adaption with increased virulence for humans. To investigate the genetic basis of H9N2 influenza virus host range and pathogenicity in mammals, we generated a mouse-adapted H9N2 virus (SD16-MA) that possessed significantly higher virulence than wide-type virus (SD16). Increased virulence was detectable after 8 sequential lung passages in mice. Five amino acid substitutions were found in the genome of SD16-MA compared with SD16 virus: PB2 (M147L, V250G and E627K), HA (L226Q) and M1 (R210K). Assessments of replication in mice showed that all of the SD16-MA PB2, HA and M1 genome segments increased virus replication; however, only the mouse-adapted PB2 significantly increased virulence. Although the PB2 E627K amino acid substitution enhanced viral polymerase activity and replication, none of the single mutations of mouse adapted PB2 could confer increased virulence on the SD16 backbone. The combination of M147L and E627K significantly enhanced viral replication ability and virulence in mice. Thus, our results show that the combination of PB2 amino acids at position 147 and 627 is critical for the increased pathogenicity of H9N2 influenza virus in mammalian host. 相似文献
20.
Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus 下载免费PDF全文
Wei CJ Xu L Kong WP Shi W Canis K Stevens J Yang ZY Dell A Haslam SM Wilson IA Nabel GJ 《Journal of virology》2008,82(13):6200-6208
Although the human transmission of avian H5N1 virus remains low, the prevalence of this highly pathogenic infection in avian species underscores the need for a preventive vaccine that can be made without eggs. Here, we systematically analyze various forms of recombinant hemagglutinin (HA) protein for their potential efficacy as vaccines. Monomeric, trimeric, and oligomeric H5N1 HA proteins were expressed and purified from either insect or mammalian cells. The immunogenicity of different recombinant HA proteins was evaluated by measuring the neutralizing antibody response. Neutralizing antibodies to H5N1 HA were readily generated in mice immunized with the recombinant HA proteins, but they varied in potency depending on their multimeric nature and cell source. Among the HA proteins, a high-molecular-weight oligomer elicited the strongest antibody response, followed by the trimer; the monomer showed minimal efficacy. The coexpression of another viral surface protein, neuraminidase, did not affect the immunogenicity of the HA oligomer, as expected from the immunogenicity of trimers produced from insect cells. As anticipated, HA expressed in mammalian cells without NA retained the terminal sialic acid residues and failed to bind alpha2,3-linked sialic acid receptors. Taken together, these results suggest that recombinant HA proteins as individual or oligomeric trimers can elicit potent neutralizing antibody responses to avian H5N1 influenza viruses. 相似文献