首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的检测食管鳞状细胞癌(esophageal squamous cell cancer,ESCC)中Wnt通路拮抗基因DICKKOPF-3(DKK3)的甲基化状态,探讨其与ESCC发生的关系。方法应用甲基化特异性PCR(methylation specificPCR,MSP)及RT-PCR的方法检测78例ESCC及相应癌旁非肿瘤组织中DKK3基因的甲基化状态及mRNA表达情况,应用免疫组化的方法检测通路中心因子-βcatenin蛋白及下游靶基因cyclinD1的表达,并分析其与食管癌发生的关系。结果在ESCC组织中,DKK3基因的甲基化频率为37.2%(29/78),明显高于癌旁非肿瘤组织(χ2=35.622,P=0.000);癌组织中该基因的甲基化率与肿瘤患者临床分期相关(χ2=4.705,P=0.030),而与组织学分级无关;食管癌中DKK3基因mRNA的阳性表达率为65.4%(51/78),明显低于癌旁非肿瘤组织(χ2=13.298,P=0.000)。在发生甲基化的食管癌组织中该基因的mRNA表达缺失及-βcatenin蛋白的异质表达率均明显高于未发生甲基化的癌组织,且差异有统计学意义(χ2mRNA=29.141,P=0.000;χ2-βcatenin=6.245,P=0.012)。食管癌中cyclinD1的表达明显高于癌旁组织,且癌组织中该蛋白的表达与DKK3基因的甲基化状态相关(χ2=4.921,P=0.027)。结论 ESCC组织中DKK3基因高甲基化导致的转录沉默可能与食管癌的发生有关,并可能通过活化Wnt/-βcatenin信号转导通路促进下游靶基因cyclinD1的过表达发挥作用。  相似文献   

2.
3.
This study aims to elucidate the mechanisms of Wnt/β-catenin signaling pathway in the development of preeclampsia (PE). The mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were determined by real-time PCR in the placentas. Moreover, the expression levels of Wnt1, β-catenin, Dickkopf-1 (DKK1) and glycogen synthase kinase 3β (GSK-3β) proteins were detected by Western blot. Immunohistochemistry was used in placental tissue microarray to localize the expression of Wnt1, β-catenin, DKK1 proteins in the placentas of two groups. Compared with the control placentas, the mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were decreased in the severe preeclamptic placentas. The Western blot results showed that the expression levels of Wnt1, β-catenin, and GSK-3β proteins were significantly elevated in the control group, while the expression level of DKK1 was significantly decreased. In addition, the staining intensity of Wnt1, β-catenin were weaker in the placentas of the severe PE group while the staining intensity of DKK1 was significantly stronger in the placentas of the severe PE group. Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of PE by regulating the invasion and proliferation of trophoblast.  相似文献   

4.
5.
6.
7.
8.
《Epigenetics》2013,8(4):343-351
Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to uncontrolled cell-growth and impaired differentiation. We hypothesized that gene silencing mediated through aberrant promoter methylation of upstream Wnt antagonist genes might result in β-catenin accumulation, resulting in constitutive Wnt activation. Wnt antagonist genes (SFRP1, WIF1, APC and CDH1) and CTNNB1 promoter methylation was examined in genomic DNA extracted from 12 urological cancer cell lines and correlated with CTNNB1 mRNA expression. Promoter methylation status was then assessed in 36 BCa, 30 PCa, 31 RCT, and normal bladder mucosa (15), prostate (10) and renal (5) tissue samples. Finally, CTNNB1 mRNA relative expression levels were correlated with Wnt antagonist gene methylation status in RCT. Methylation was found in at least one Wnt antagonist gene and the CTNNB1 promoter was unmethylated in all cancer cell lines tested. When gene methylation levels were compared between cancer cell lines with high and low CTNNB1 mRNA expression, a trend was found for increased CDH1 promoter methylation levels in the former. BCa and PCa tumors demonstrated high frequency of promoter methylation at all tested genes. In RCT, CTNNB1 was unmethylated in all cases and the overall frequency of promoter methylation at the remainder genes was lower. Interestingly, median CTNNB1 mRNA expression levels were significantly higher in RCTs methylated in at least one Wnt antagonist gene promoter. We concluded that epigenetic deregulation of Wnt pathway inhibitors may contribute to aberrant activation of Wnt signaling pathway in bladder, prostate and renal tumors.  相似文献   

9.
10.
Zhang DY  Wang HJ  Tan YZ 《PloS one》2011,6(6):e21397
Recent studies have demonstrated the importance of cellular extrinsic factors in the aging of adult stem cells. However, the effects of an aged cell-extrinsic environment on mesenchymal stem cell (MSC) aging and the factors involved remain unclear. In the current study, we examine the effects of old rat serum (ORS) on the aging of MSCs, and explore the effects and mechanisms of Wnt/β-catenin signaling on MSC aging induced by ORS treatment. Senescence-associated changes in the cells are examined with SA-β-galactosidase staining and ROS staining. The proliferation ability is detected by MTT assay. The surviving and apoptotic cells are determined using AO/EB staining. The results suggest that ORS promotes MSC senescence and reduces the proliferation and survival of cells. The immunofluorescence staining shows that the expression of β-catenin increases in MSCs of old rats. To identify the effects of Wnt/β-catenin signaling on MSC aging induced with ORS, the expression of β-catenin, GSK-3β, and c-myc are detected. The results show that the Wnt/β-catenin signaling in the cells is activated after ORS treatment. Then we examine the aging, proliferation, and survival of MSCs after modulating Wnt/β-catenin signaling. The results indicate that the senescence and dysfunction of MSCs in the medium containing ORS is reversed by the Wnt/β-catenin signaling inhibitor DKK1 or by β-catenin siRNA. Moreover, the expression of γ-H2A.X, a molecular marker of DNA damage response, p16(INK4a), p53, and p21 is increased in senescent MSCs induced with ORS, and is also reversed by DKK1 or by β-catenin siRNA. In summary, our study indicates the Wnt/β-catenin signaling may play a critical role in MSC aging induced by the serum of aged animals and suggests that the DNA damage response and p53/p21 pathway may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Osteogenic differentiation refers to the process of bone formation and remodeling, which is controlled by complex molecular mechanisms. Activin A receptor type I (ACVR1) is reported to be associated with osteogenic differentiation. However, the underlying molecular mechanism remains elusive. Therefore, this study evaluates the function of ACVR1 in osteogenic differentiation through the Wnt signaling pathway. The expression of osteocalcin (Oc) and osterix together with osteogenic differentiation and mineralization was examined in ACVR1-knockout (KO) mouse. Furthermore, the Wnt signaling pathway was inhibited in bone marrow stromal cells (BMSCs) of mice to explore the role of the Wnt signaling pathway in osteogenic differentiation by means of alkaline phosphatase (ALP) activity detection and evaluation of mineralized nodules and calcium content. Subsequently, the effect of ACVR1 on the Wnt signaling pathway was assessed by determining the expression of ACVR1, β-catenin, glycogen synthase kinase 3 β (GSK3β), dickkopf-related protein 1 (DKK1), and frizzled class receptor 1 (FZD1). Both their effects on osteogenic differentiation were further evaluated by determination of Oc, osterix, and Runx2 expression. AVCR1 KO mice exhibited increased Oc and osterix expression and promoted bone resorption and formation. ACVR1-knockout was observed to activate the Wnt signaling pathway with an increase of β-catenin and reductions in GSK3β, DKK1, and FZD1. With the inhibited Wnt signaling pathway expression of Oc, osterix, and Runx2 was decreased, and ALP activity, mineralized nodule, and calcium content in cellular matrix were decreased as well, indicating that inactivation of the Wnt signaling pathway reduced the differentiation of BMSCs into osteoclasts. These findings indicate that ACVR1-knockout promotes osteogenic differentiation by activating the Wnt signaling pathway in mice.  相似文献   

18.
Recent studies have shown that allogeneic bone marrow (BM)-mesenchymal stem cell transplantation (MSCT) appears to be effective in systemic lupus erythematosus (SLE) patients and lupus-prone mice, contrary to studies in syngeneic BM-MSCT. These studies indicated that the abnormalities of BM-MSCs may be involved in the pathogenesis of SLE. Our studies and other previous studies have revealed that BM-MSCs from SLE patients exhibited early signs of senescence, such as flattened morphology, slow proliferation, increased senescence-associated β-galactosidase (SA-β-gal) activity, and so on. However, the mechanisms by which these cells senescences were still unclear. Previous studies have demonstrated that Wnt/β-catenin signaling plays an important role in stem cell senescence. In the current study, we investigated whether Wnt/β-catenin signaling mediates the senescence of BM-MSCs from SLE patients. We have found that Wnt/β-catenin signaling and the p53/p21 pathway were significantly hyperactivated in senescent SLE BM-MSCs. Treatment with 100 ng/mL Dickkopf-1 (DKK1), a Wnt/β-catenin signaling inhibitor or β-catenin siRNA for 48 h could reverse the senescent features of SLE BM-MSCs. Additionally, the expression levels of p53 and p21 were reduced in treated-SLE BM-MSCs compared with the untreated group. In summary, our study indicated that Wnt/β-catenin signaling may play a critical role in the senescence of SLE BM-MSCs through the p53/p21 pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号