首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleocytoplasmic trafficking of histone deacetylase 4 (HDAC4) plays an important role in regulating its function, and binding of 14-3-3 proteins is necessary for its cytoplasmic retention. Here, we report the identification of nuclear import and export sequences of HDAC4. While its N-terminal 118 residues modulate the nuclear localization, residues 244 to 279 constitute an authentic, strong nuclear localization signal. Mutational analysis of this signal revealed that three arginine-lysine clusters are necessary for its nuclear import activity. As for nuclear export, leucine-rich sequences located in the middle part of HDAC4 do not function as nuclear export signals. By contrast, a hydrophobic motif (MXXLXVXV) located at the C-terminal end serves as a nuclear export signal that is necessary for cytoplasmic retention of HDAC4. This motif is required for CRM1-mediated nuclear export of HDAC4. Furthermore, binding of 14-3-3 proteins promotes cytoplasmic localization of HDAC4 by both inhibiting its nuclear import and stimulating its nuclear export. Unlike wild-type HDAC4, a point mutant with abrogated MEF2-binding ability remains cytoplasmic upon exogenous expression of MEF2C, supporting the notion that direct MEF2 binding targets HDAC4 to the nucleus. Therefore, HDAC4 possesses intrinsic nuclear import and export signals for its dynamic nucleocytoplasmic shuttling, and association with 14-3-3 and MEF2 proteins affects such shuttling and thus directs HDAC4 to the cytoplasm and the nucleus, respectively.  相似文献   

2.
3.
The intracellular localization, and thereby the function, of a number of key regulator proteins tagged with a short leucine-rich motif (the nuclear export signal or NES) is controlled by CRM1/exportin1, which is involved in the export of these proteins from the nucleus [1]. A common characteristic of these regulators is their transient action in the nucleus during either a specific phase of the cell cycle or in response to specific signals [1]. Here, we show that a particular member of the class II histone-deacetylases mHDA2/mHDAC6 [2] belongs to this family of cellular regulators that are present predominantly in the cytoplasm, but are also capable of shuttling between the nucleus and the cytoplasm. A very potent NES present at the amino terminus of mHDAC6 was found to play an essential role in this shuttling process. The sub-cellular localization of mHDAC6 appeared to be controlled by specific signals, since the arrest of cell proliferation was found to be associated with the translocation of a fraction of the protein into the nucleus. Data presented here suggest that mHDAC6 might be the first member of a functionally distinct class of deacetylases, responsible for activities not shared by other known histone deacetylases.  相似文献   

4.
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post‐translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3‐HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type‐II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.  相似文献   

5.
6.
The eukaryotic translation initiation factor 4E (eIF4E) plays an important role in the control of cell growth. eIF4E binds to the mRNA 5' cap structure m(7)GpppN (where N is any nucleotide), and promotes ribosome binding to the mRNA in the cytoplasm. However, a fraction of eIF4E localizes to the nucleus. Here we describe the cloning and functional characterization of a new eIF4E-binding protein, referred to as 4E-T (eIF4E-Transporter). We demonstrate that 4E-T is a nucleocytoplasmic shuttling protein that contains an eIF4E-binding site, one bipartite nuclear localization signal and two leucine-rich nuclear export signals. eIF4E forms a complex with the importin alphabeta heterodimer only in the presence of 4E-T. Overexpression of wild-type 4E-T, but not of a mutant defective for eIF4E binding, causes the nuclear accumulation of HA-eIF4E in cells treated with leptomycin B. Taken together, these results demonstrate that the novel nucleocytoplasmic shuttling protein 4E-T mediates the nuclear import of eIF4E via the importin alphabeta pathway by a piggy-back mechanism.  相似文献   

7.
The Class IIa histone deacetylases (HDAC)4 and HDAC5 play a role in neuronal survival and behavioral adaptation in the CNS. Phosphorylation at 2/3 N‐terminal sites promote their nuclear export. We investigated whether non‐canonical signaling routes to Class IIa HDAC export exist because of their association with the co‐repressor Silencing Mediator Of Retinoic And Thyroid Hormone Receptors (SMRT). We found that, while HDAC5 and HDAC4 mutants lacking their N‐terminal phosphorylation sites (HDAC4MUT, HDAC5MUT) are constitutively nuclear, co‐expression with SMRT renders them exportable by signals that trigger SMRT export, such as synaptic activity, HDAC inhibition, and Brain Derived Neurotrophic Factor (BDNF) signaling. We found that SMRT's repression domain 3 (RD3) is critical for co‐shuttling of HDAC5MUT, consistent with the role for this domain in Class IIa HDAC association. In the context of BDNF signaling, we found that HDAC5WT, which was more cytoplasmic than HDAC5MUT, accumulated in the nucleus after BDNF treatment. However, co‐expression of SMRT blocked BDNF‐induced HDAC5WT import in a RD3‐dependent manner. In effect, SMRT‐mediated HDAC5WT export was opposing the BDNF‐induced HDAC5 nuclear accumulation observed in SMRT's absence. Thus, SMRT's presence may render Class IIa HDACs exportable by a wider range of signals than those which simply promote direct phosphorylation.  相似文献   

8.
A variety of stress signals stimulate cardiac myocytes to undergo hypertrophy. Persistent cardiac hypertrophy is associated with elevated risk for the development of heart failure. Recently, we showed that class II histone deacetylases (HDACs) suppress cardiac hypertrophy and that stress signals neutralize this repressive function by triggering phosphorylation- and CRM1-dependent nuclear export of these chromatin-modifying enzymes. However, the identities of cardiac HDAC kinases have remained unclear. Here, we demonstrate that signaling by protein kinase C (PKC) is sufficient and, in some cases, necessary to drive nuclear export of class II HDAC5 in cardiomyocytes. Inhibition of PKC prevents nucleocytoplasmic shuttling of HDAC5 in response to a subset of hypertrophic agonists. Moreover, a nonphosphorylatable HDAC5 mutant is refractory to PKC signaling and blocks cardiomyocyte hypertrophy mediated by pharmacological activators of PKC. We also demonstrate that protein kinase D (PKD), a downstream effector of PKC, directly phosphorylates HDAC5 and stimulates its nuclear export. These findings reveal a novel function for the PKC/PKD axis in coupling extracellular cues to chromatin modifications that control cellular growth, and they suggest potential utility for small-molecule inhibitors of this pathway in the treatment of pathological cardiac gene expression.  相似文献   

9.
10.
We demonstrated previously that 69- and 82-kDa human choline acetyltransferase are localized predominantly to the cytoplasm and the nucleus, respectively. We have now identified a nuclear localization signal common to both forms of enzyme using confocal microscopy to study the subcellular compartmentalization of choline acetyltransferase tagged with green fluorescent protein in living HEK 293 cells. To identify functional nuclear localization and export signals, portions of full-length 69-kDa choline acetyltransferase were cloned into the vector peGFP-N1 and the cellular distribution patterns of the fusion proteins observed. Of the nine constructs studied, one yielded a protein with nuclear localization and another produced a protein with cytoplasmic localization. Mutation of the critical amino acids in this novel putative nuclear localization signal in the 69- and 82-kDa enzymes demonstrated that it is functional in both proteins. Moreover, 69-kDa choline acetyltransferase but not the 82-kDa enzyme is transported out of the nucleus by the leptomycin B-sensitive Crm-1 export pathway. By using bikaryon cells expressing both 82-kDa choline acetyltransferase and the nuclear protein heterogeneous nuclear ribonucleoprotein with green and red fluorescent tags, respectively, we found that the 82-kDa enzyme does not shuttle out of the nucleus in measurable amounts. These data suggest that 69-kDa choline acetyltransferase is a nucleocytoplasmic shuttling protein with a predominantly cytoplasmic localization determined by a functional nuclear localization signal and unidentified putative nuclear export signal. For 82-kDa choline acetyltransferase, the presence of the unique amino-terminal nuclear localization signal plus the newly identified nuclear localization signal may be involved in a process leading to predominantly nuclear accumulation of this enzyme, or alternatively, the two nuclear localization signals may be sufficient to overcome the force(s) driving nuclear export.  相似文献   

11.
Disabled1 (DAB1) is an intracellular mediator of the Reelin-signaling pathway and essential for correct neuronal positioning during brain development. So far, DAB1 has been considered a cytoplasmic protein. Here, we show that DAB1 is subject to nucleocytoplasmic shuttling. In its steady state, DAB1 is mainly located in the cytoplasm. However, treatment with leptomycine B, a specific inhibitor of the CRM1 (chromosomal region maintenance 1)-RanGTP-dependent nuclear export, resulted in nuclear accumulation of DAB1. By using deletion or substitutional mutants of DAB1 fused with enhanced green fluorescent protein, we have mapped a bipartite nuclear localization signal and two CRM1-dependent nuclear export signals. These targeting signals were functional in both Neuro2a cells and primary cerebral cortical neurons. Using purified recombinant proteins, we have shown that CRM1 binds to DAB1 directly in a RanGTP-dependent manner. We also show that tyrosine phosphorylation of DAB1, which is indispensable for the layer formation of the brain, by Fyn tyrosine kinase or Reelin stimulation did not affect the subcellular localization of DAB1 in vitro. These results suggest that DAB1 is a nucleocytoplasmic shuttling protein and raise the possibility that DAB1 plays a role in the nucleus as well as in the cytoplasm.  相似文献   

12.
Interferon stimulation of cells leads to the tyrosine phosphorylation of latent Stat1 and subsequent transient accumulation in the nucleus that requires canonical transport factors. However, the mechanisms that control the predominantly cytoplasmic localization in unstimulated cells have not been resolved. We uncovered that constitutive energy- and transport factor-independent nucleocytoplasmic shuttling is a property of unphosphorylated Stat1, Stat3, and Stat5. The NH(2)- and COOH-terminal Stat domains are generally dispensable, whereas alkylation of a single cysteine residue blocked cytokine-independent nuclear translocation and thus implicated the linker domain into the cycling of Stat1. It is revealed that constitutive nucleocytoplasmic shuttling of Stat1 is mediated by direct interactions with the FG repeat regions of nucleoporin 153 and nucleoporin 214 of the nuclear pore. Concurrent active nuclear export by CRM1 created a nucleocytoplasmic Stat1 concentration gradient that is significantly reduced by the blocking of energy-requiring translocation mechanisms or the specific inactivation of CRM1. Thus, we propose that two independent translocation pathways cooperate to determine the steady-state distribution of Stat1.  相似文献   

13.
14.
15.
16.
17.
Previous studies defined pUL84 of human cytomegalovirus as an essential regulatory protein with nuclear localization that was proposed to act during initiation of viral-DNA synthesis. Recently, we demonstrated that a complex domain of 282 amino acids within pUL84 functions as a nonconventional nuclear localization signal. Sequence inspection of this domain revealed the presence of motifs with homology to leucine-rich nuclear export signals. Here, we report the identification of two functional, autonomous nuclear export signals and show that pUL84 acts as a CRM-1-dependent nucleocytoplasmic shuttling protein. This suggests an unexpected cytoplasmic role for this essential viral regulatory protein.  相似文献   

18.
19.
20.
Integrin cytoplasmic domain-associated protein 1 (ICAP-1) has been shown to interact specifically with the beta1 integrin cytoplasmic domain and to control cell spreading on fibronectin. Interestingly, ICAP-1 also is observed in the nucleus, by immunocytochemical staining, and after biochemical cell fractionation, suggesting that it has additional roles that have yet to be determined. We show that the nucleocytoplasmic shuttling capability of ICAP-1 is dependent on a functional nuclear localization signal. In addition, overexpression of beta1 integrin strongly reduced this nuclear localization, suggesting that integrin activity could modulate ICAP-1 shuttling by sequestering it in the cytoplasm. Indeed, the nuclear localization of ICAP-1 is dependent on the stage of cell spreading on fibronectin, and we also show that ICAP-1 expression stimulates cellular proliferation in a fibronectin-dependent manner. This function is dependent on its nuclear localization. Moreover, ICAP-1 is able to activate the c-myc promoter in vitro. Together, these results demonstrate that ICAP-1 shuttles between the nucleus and cytoplasm in a beta1 integrin-dependent manner. It could act as a messenger that relays information from sites of integrin-dependent cell adhesion to the nucleus for controlling gene expression and cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号