首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Structures that have diverged from a common ancestor often retain functional and sequence similarity, although the latter may be very reduced. Even so, the overall fold of the structure is generally highly conserved. Now however, several have been identified of proteins that have been identified that have different functions but which have converged to a similar fold. These proteins will also have low sequence identities. RESULTS: By comparing the complete structure databank against itself, using sequence and structure alignment techniques, we have been able to identify six new examples of structurally related folds that have no apparent sequence or functional similarity. These related proteins include a family of crambin-like folds and a family of ferredoxin II folds. We found that all the similarities between structures are present in small proteins and occur as motifs within the core of a larger protein. CONCLUSION: The low sequence similarity and the lack of any obvious functional relationship between proteins with similar structures suggest that the proteins have diverged from independent ancestors. The similarities may therefore be of interest for understanding the various stereochemical and physical criteria that operate to generate a favourable fold.  相似文献   

2.
Studying similarities in protein molecules has become a fundamental activity in much of biology and biomedical research, for which methods such as multiple sequence alignments are widely used. Most methods available for such comparisons cater to studying proteins which have clearly recognizable evolutionary relationships but not to proteins that recognize the same or similar ligands but do not share similarities in their sequence or structural folds. In many cases, proteins in the latter class share structural similarities only in their binding sites. While several algorithms are available for comparing binding sites, there are none for deriving structural motifs of the binding sites, independent of the whole proteins. We report the development of SiteMotif, a new algorithm that compares binding sites from multiple proteins and derives sequence-order independent structural site motifs. We have tested the algorithm at multiple levels of complexity and demonstrate its performance in different scenarios. We have benchmarked against 3 current methods available for binding site comparison and demonstrate superior performance of our algorithm. We show that SiteMotif identifies new structural motifs of spatially conserved residues in proteins, even when there is no sequence or fold-level similarity. We expect SiteMotif to be useful for deriving key mechanistic insights into the mode of ligand interaction, predict the ligand type that a protein can bind and improve the sensitivity of functional annotation.  相似文献   

3.
SUMMARY: The database of structural motifs in proteins (DSMP) contains data relevant to helices, beta-turns, gamma-turns, beta-hairpins, psi-loops, beta-alpha-beta motifs, beta-sheets, beta-strands and disulphide bridges extracted from all proteins in the Protein Data Bank primarily using the PROMOTIF program and implemented as a web-based network service using the SRS. The data corresponding to the structural motifs includes; sequence, position in polypeptide chain, geometry, type, unique code, keywords and resolution of crystal structure. This data is available for a representative data set of 1028 protein chains and also for all 10 213 proteins in the Protein Data Bank. The three-dimensional coordinates for all structural motifs (except sheet and disulphide bridge) are also available for the representative data set. Using features in SRS, DSMP can be queried to extract information from one or more structural motifs that may be useful for sequence-structure analysis, prediction, modelling or design. AVAILABILITY: http://www. cdfd.org.in/dsmp.html  相似文献   

4.
5.
Sujatha MS  Balaji PV 《Proteins》2004,55(1):44-65
Galactose-binding proteins characterize an important subgroup of sugar-binding proteins that are involved in a variety of biological processes. Structural studies have shown that the Gal-specific proteins encompass a diverse range of primary and tertiary structures. The binding sites for galactose also seem to vary in different protein-galactose complexes. No common binding site features that are shared by the Gal-specific proteins to achieve ligand specificity are so far known. With the assumption that common recognition principles will exist for common substrate recognition, the present study was undertaken to identify and characterize any unique galactose-binding site signature by analyzing the three-dimensional (3D) structures of 18 protein-galactose complexes. These proteins belong to 7 nonhomologous families; thus, there is no sequence or structural similarity across the families. Within each family, the binding site residues and their relative distances were well conserved, but there were no similarities across families. A novel, yet simple, approach was adopted to characterize the binding site residues by representing their relative spatial dispositions in polar coordinates. A combination of the deduced geometrical features with the structural characteristics, such as solvent accessibility and secondary structure type, furnished a potential galactose-binding site signature. The signature was evaluated by incorporation into the program COTRAN to search for potential galactose-binding sites in proteins that share the same fold as the known galactose-binding proteins. COTRAN is able to detect galactose-binding sites with a very high specificity and sensitivity. The deduced galactose-binding site signature is strongly validated and can be used to search for galactose-binding sites in proteins. PROSITE-type signature sequences have also been inferred for galectin and C-type animal lectin-like fold families of Gal-binding proteins.  相似文献   

6.
《Journal of lipid research》2017,58(6):1044-1054
Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol's hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv) the steroid's C21 and C26 constitute the “hot spots” most often seen for steroid-protein hydrophobic interactions; v) common “cold spots” are C8–C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved.  相似文献   

7.
IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.  相似文献   

8.
SMotif is a server that identifies important structural segments or motifs for a given protein structure(s) based on conservation of both sequential as well as important structural features such as solvent inaccessibility, secondary structural content, hydrogen bonding pattern and residue packing. This server also provides three-dimensional orientation patterns of the identified motifs in terms of inter-motif distances and torsion angles. These motifs may form the common core and therefore, can also be employed to design and rationalize protein engineering and folding experiments. AVAILABILITY: SMotif server is available via the URL http://caps.ncbs.res.in/SMotif/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

9.
Detecting cis-regulatory binding sites for cooperatively binding proteins   总被引:1,自引:0,他引:1  
Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account.  相似文献   

10.
MOTIVATION: Much research has been devoted to the characterization of interaction interfaces found in complexes with known structure. In this context, the interactions of non-homologous domains at equivalent binding sites are of particular interest, as they can reveal convergently evolved interface motifs. Such motifs are an important source of information to formulate rules for interaction specificity and to design ligands based on the common features shared among diverse partners. RESULTS: We develop a novel method to identify non-homologous structural domains which bind at equivalent sites when interacting with a common partner. We systematically apply this method to all pairs of interactions with known structure and derive a comprehensive database for these interactions. Of all non-homologous domains, which bind with a common interaction partner, 4.2% use the same interface of the common interaction partner (excluding immunoglobulins and proteases). This rises to 16% if immunoglobulin and proteases are included. We demonstrate two applications of our database: first, the systematic screening for viral protein interfaces, which can mimic native interfaces and thus interfere; and second, structural motifs in enzymes and its inhibitors. We highlight several cases of virus protein mimicry: viral M3 protein interferes with a chemokine dimer interface. The virus has evolved the motif SVSPLP, which mimics the native SSDTTP motif. A second example is the regulatory factor Nef in HIV which can mimic a kinase when interacting with SH3. Among others the virus has evolved the kinase's PxxP motif. Further, we elucidate motif resemblances in Baculovirus p35 and HIV capsid proteins. Finally, chymotrypsin is subject to scrutiny wrt. its structural similarity to subtilisin and wrt. its inhibitor's similar recognition sites. SUPPLEMENTARY INFORMATION: A database is online at scoppi.biotec.tu-dresden.de/abac/.  相似文献   

11.

Background  

Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands.  相似文献   

12.

Background  

For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg2+, one of the most versatile metal cofactors in cellular biochemistry. Even when Mg2+-proteins share insufficient sequence homology to identify Mg2+-specific sequence motifs, they may still share similarity in the Mg2+-binding site structure. However, no structural motifs characteristic of Mg2+-binding sites have been reported. Thus, our aims are (i) to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii) to apply it to Mg2+-proteins sharing <30% sequence identity. Our motif discovery method employs structural alphabet encoding to convert 3D structures to the corresponding 1D structural letter sequences, where the Mg2+-structural motifs are identified as recurring structural patterns.  相似文献   

13.
Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.  相似文献   

14.
  相似文献   

15.
Common structural motifs in proteins of the extracellular matrix   总被引:6,自引:0,他引:6  
Proteins of the extracellular matrix are composed of many structurally and often functionally different autonomous domains which frequently occur as modular units in several different extracellular matrix proteins, but also in proteins of different origin. Some domains serve related assembly functions in different proteins but for domains involved in cell attachment and other cellular activities only a few generalizations are possible.  相似文献   

16.
17.
18.
19.
Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif.  相似文献   

20.
Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain golgins, whose C termini bind the Arf-like 1 G protein on the trans-Golgi, can also bind four members of the Rab family of G proteins. The Rab2-, Rab6-, Rab19-, and Rab30-binding sites are within the coiled-coil regions that are not required for Golgi targeting. Binding sites for two of these Rabs are also present on two coiled-coil proteins of the cis-Golgi, the Drosophila melanogaster orthologues of GM130 and GMAP-210. We suggest an integrated model for a tentacular Golgi in which coiled-coil proteins surround the Golgi to capture and retain Rab-containing membranes, excluding other structures such as ribosomes. Binding sites for diverse Rabs could ensure that incoming carriers are captured on first contact and moved to their correct destination within the stack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号