首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development.

Methods

We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis.

Results

Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues.

Conclusion

Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.  相似文献   

2.
Androgen deprivation constitutes the principal therapy for advanced and metastatic prostate cancers. However, this therapeutic intervention usually results in the transition to a more aggressive androgen-independent prostate cancer. The elucidation of molecular alterations during the progression to androgen independence is an integral step toward discovering more effective targeted therapies. With respect to identifying crucial mediators of this transition, we compared the proteomes of androgen-independent (PC3, DU145, PPC1, LNCaP-SF, and 22Rv1) and androgen-dependent (LNCaP and VCaP) and/or normal prostate epithelial (RWPE) cell lines using mass spectrometry. We identified more than 100 proteins that were differentially secreted in the androgen-independent cell lines. Of these, Protein S (PROS1) was elevated in the secretomes of all of the androgen-independent prostate cancer cell lines, with no detectable secretion in normal and androgen-dependent cell lines. Using quantitative PCR, we observed significantly higher (p < 0.05) tissue expression levels of PROS1 in prostate cancer samples, further indicating its importance in prostate cancer progression. Similarly, immunohistochemistry analysis revealed elevation of PROS1 in high grade prostate cancer (Gleason grade ≥8), and further elevation in castration-resistant metastatic prostate cancer lesions. We also observed its significant (p < 0.05) elevation in high grade prostate cancer seminal plasma samples. Taken together, these results show that PROS1 is elevated in high grade and castration-resistant prostate cancer and could serve as a potential biomarker of aggressive disease.  相似文献   

3.
Here, we examined the status of stromal Cav-1 expression in patients with benign prostatic hypertrophy (BPH), primary prostate cancers (PCa), and prostate-cancer metastases (Mets). Interestingly, an absence of stromal Cav-1 directly correlated with prostate cancer disease progression. For example, virtually all BPH samples showed abundant stromal Cav-1 immunostaining. In contrast, in a subset of patients with primary prostate cancer, the stromal levels of Cav-1 were significantly decreased, and this correlated with a high Gleason score, indicative of a worse prognosis and poor clinical outcome. Remarkably, all metastatic tumors (either from lymph node or bone) were completely negative for stromal Cav-1 staining. Thus, stromal Cav-1 expression may be considered as a new biomarker of prostate cancer disease progression and metastasis. Mechanistically, stromal Cav-1 levels were inversely correlated with the epithelial expression levels of Cav-1 and epithelial phospho-Akt. Thus, loss of stromal Cav-1 is predictive of elevated levels of epithelial Cav-1 and epithelial Akt-activation. This provides important new clinical evidence for paracrine signaling between prostate cancer epithelial cells and the tumor stromal micro-environment, especially related to disease progression and metastasis.  相似文献   

4.
Prostate cancer bone metastases are characterized by their ability to induce osteoblastic lesions and local bone formation. It has been suggested that bone metastatic prostate cancer cells are osteomimetic and capable of expressing genes and proteins typically expressed by osteoblasts. The ability of preosteoblasts to differentiate and express osteoblastic genes depends on several pathways, including Notch and MAPK. Here we show that notch1 expression is increased 4-5 times in C4-2B and MDA PCa 2b cells (osteoblastic skeletal prostate metastatic cancer cell lines) when compared with nonskeletal metastatic cell lines (LNCaP and DU145). Notch1 ligand, dll1, is expressed only in C4-2B cells. Immunohistochemical studies demonstrate that Notch1 is present in both human clinical samples from prostate cancer bone metastases and the C4-2B cell line. To determine whether prostate cancer bone metastases respond to osteogenic induction similar to osteoblasts, C4-2B cells were cultured in osteogenic medium that promotes mineralization. C4-2B cells mineralize and express HES-1 (a downstream target of Notch), an effect that is completely inhibited by L-685,458, a Notch activity inhibitor. Furthermore, osteogenic induction increases ERK activation, runx2 expression, and nuclear localization, independent of Notch signaling. Finally, we show that Notch and ERK activation are essential for Runx2 DNA binding activity and osteocalcin gene expression in C4-2B cells in response to osteogenic induction. These studies demonstrate that prostate cancer bone metastatic cell lines acquire osteoblastic properties through independent activation of ERK and Notch signaling; presumably, both pathways are activated in the bone microenvironment.  相似文献   

5.
BackgroundNon-osteoporotic skeletal-related events (SREs) are clinically important markers of disease progression in prostate cancer. We developed and validated an approach to identify SREs in men with prostate cancer using routinely-collected data.MethodsPatients diagnosed with prostate cancer between January 2010 and December 2013 were identified in the National Prostate Cancer Audit, based on English cancer registry data. A coding framework was developed based on diagnostic and procedure codes in linked national administrative hospital and routinely-collected radiotherapy data to identify SREs occurring before December 2015. Two coding definitions of SREs were assessed based on whether the SRE codes were paired with a bone metastasis code (‘specific definition’) or used in isolation (‘sensitive definition’). We explored the validity of both definitions by comparing the cumulative incidence of SREs from time of diagnosis according to prostate cancer stage at diagnosis with death as a competing risk.ResultsWe identified 40,063, 25,234 and 13,968 patients diagnosed with localised, locally advanced and metastatic disease, respectively. Using the specific definition, we found that the 5-year cumulative incidence of SREs was 1.0 % in patients with localised disease, 6.0 % in patients with locally advanced disease, and 42.3 % in patients with metastatic disease. Using the sensitive definition, the corresponding cumulative incidence figures were 9.0 %, 14.9 %, and 44.4 %, respectively.ConclusionThe comparison of the cumulative incidence of SREs identified in routinely collected hospital data, based on a specific coding definition in patients diagnosed with different prostate cancer stage, supports their validity as a clinically important marker of cancer progression.  相似文献   

6.
Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the “stemness” marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.  相似文献   

7.
8.
The Polycomb-group (PcG) gene BMI1 is required for the proliferation and self-renewal of normal and leukemic stem cells. Overexpression of the BMI1 oncogene causes neoplastic transformation of lymphocytes and plays an essential role in the pathogenesis of myeloid leukemia. Another PcG protein, Ezh2, was implicated in metastatic prostate and breast cancers, suggesting that PcG pathway activation is relevant for epithelial malignancies. Whether an oncogenic role of the BMI1 and PcG pathway activation may be extended beyond leukemia and may affect progression of solid tumors as well remains unknown. Here we demonstrate that activation of the BMI1 oncogene-associated PcG pathway plays an essential role in metastatic prostate cancer, thus mechanistically linking the pathogenesis of leukemia, self-renewal of stem cells, and prostate cancer metastasis. To characterize the functional status of the PcG pathway in metastatic prostate cancer, we utilized advanced cell- and whole animal-imaging technologies, gene and protein expression profiling, stable siRNA gene targeting, and tissue microarray (TMA) analysis in relevant experimental and clinical settings. We demonstrate that in multiple experimental models of metastatic prostate cancer both the BMI1 and Ezh2 genes are amplified and gene amplification is associated with increased expression of corresponding mRNAs and proteins. For the first time, we provide images of human prostate carcinoma metastasis precursor cells isolated from the circulation which overexpress both the BMI1 and Ezh2 oncoproteins. Consistent with the PcG pathway activation hypothesis, increased BMI1 and Ezh2 expression in metastatic cancer cells is associated with elevated levels of H2AubiK119 and H3metK27 histones. Quantitative immunofluorescence colocalization analysis and expression profiling experiments documented increased the BMI1 and Ezh2 expression in clinical prostate carcinoma samples and demonstrated that high levels of BMI1 and Ezh2 expression are associated with markedly increased likelihood of therapy failure and disease relapse after radical prostatectomy. Gene-silencing analysis reveals that activation of the PcG pathway is mechanistically linked with highly malignant behavior of human prostate carcinoma cells and is essential for in vivo growth and metastasis of human prostate cancer. We conclude that the results of experimental and clinical analyses indicate important biological role of PcG pathway activation in metastatic prostate cancer. Our work suggests that the PcG pathway activation is a common oncogenic event in pathogenesis of metastatic solid tumors and provides justification for development of small molecule inhibitors of the PcG chromatin silencing pathway as a novel therapeutic modality for treatment of metastatic prostate cancer.  相似文献   

9.
Microarrays have been the primary means for large-scale analyses of genes implicated in cancer progression. However, more recently a need has been recognized for investigating cancer development directly at the protein level. In this report, we have applied a comparative proteomic technique to the study of metastatic prostate cancer. This technology, termed stable isotope labeling with amino acids in cell culture (SILAC), has recently gained popularity for its ability to compare the expression levels of hundreds of proteins in a single experiment. SILAC makes use of (12)C- and (13)C-labeled amino acids added to the growth media of separately cultured cell lines, giving rise to cells containing either "light" or "heavy" proteins, respectively. Upon mixing lysates collected from these cells, proteins can be identified by tandem mass spectrometry. The incorporation of stable isotopes also allows for a quantitative comparison between the two samples. Using this method, we compared the expression levels for more than 440 proteins in the microsomal fractions of prostate cancer cells with varying metastatic potential. Of these, 60 were found elevated greater than 3-fold in the highly metastatic cells, whereas 22 were reduced by equivalent amounts. Western blotting provided further confirmation of the mass spectrometry-based quantification. Our results demonstrate the applicability of this novel approach toward the study of cancer progression using defined cell lines.  相似文献   

10.
Bone morphogenetic proteins (BMP) have the ability to induce ectopic bone formation. The findings of their expression in prostate cancers have been linked with specifically tumor progression to bone and development of osteosclerotic metastases. We investigated the expression pattern of BMP-2/4, -6 and -7 and the receptors BMPR-IA,-IB and -II in normal human prostate, organ-localized and metastatic prostate cancers. The expression we also examined in skeletal metastases caused by prostate cancer. In localized prostate cancers we found increased expression of BMP-6 and decreased expression of BMP-2/4 and -7. In metastatic prostate cancers the expression of examined BMPs decreased. The expression of BMPRs showed the tendency to be lower with progression of prostate cancer but the expression of BMPR-II was completely absent in metastatic prostate cancers. In bone metastases caused by prostate cancer we found high expression of BMP-2/4, -6 and -7. Decreased expression of BMPs and lose of BMPR-II expression, could suggest that the influence of BMPs on prostate cancer cells is inhibited and plays an important role in prostate cancer pathogenesis. High expression of osteogenic BMPs in prostate cancer bone metastases could explain their osteosclerotic properties.  相似文献   

11.
BackgroundNo previous Australian population-based studies have described or quantified the progression of colorectal cancer (CRC) to metastatic disease. We describe patterns of progression to metastatic disease for an Australian cohort diagnosed with localised or regional CRC.MethodsAll localised and regional CRC cases in the New South Wales Cancer Registry diagnosed during 2000–2007 were followed to December 2011 for subsequent metastases (identified by subsequent disease episode notifications) or CRC death. Cox regression was used to identify factors associated with metastatic progression.ResultsAfter a median 5.3 years follow-up, 26.4% of the 12757 cases initially diagnosed with localised or regional colon cancer had developed metastatic disease, as had 29.5% of the 7154 rectal cancer cases. For both cancer sites, risk of metastatic progression was significantly higher for those initially diagnosed with regional disease (adjusted hazard ratio [aHR] 3.49 for colon, 2.66 for rectal cancer), and for older cases (e.g. aHR for >79 years vs <60 years: 1.38 for colon, 1.69 for rectal cancer). Risk of disease progression was significantly lower for females, and varied by histology type. For colon cancer, the risk of disease progression decreased over time. For rectal cancer, risk of metastatic progression was significantly higher for those living in more socioeconomically disadvantaged areas compared with those in the least disadvantaged area.ConclusionsAn understanding of the variation in risk of metastatic progression is useful for planning health service requirements, and can help inform decisions about treatment and follow-up for colorectal cancer patients.  相似文献   

12.
Caveolin-1 (Cav-1) is the primary structural component of caveolae and is implicated in the processes of vesicular transport, cholesterol balance, transformation, and tumorigenesis. Despite an abundance of data suggesting that Cav-1 has transformation suppressor properties both in vitro and in vivo, Cav-1 is expressed at increased levels in human prostate cancer. To investigate the role of Cav-1 in prostate cancer onset and progression, we interbred Cav-1(-/-) null mice with a TRAMP (transgenic adenocarcinoma of mouse prostate) model that spontaneously develops advanced prostate cancer and metastatic disease. We found that, although the loss of Cav-1 did not affect the appearance of minimally invasive prostate cancer, its absence significantly impeded progression to highly invasive and metastatic disease. Inactivation of one (+/-) or both (-/-) alleles of Cav-1 resulted in significant reductions in prostate tumor burden, as well as decreases in regional lymph node metastases. Moreover, further examination revealed decreased metastasis to distant organs, such as the lungs, in TRAMP/Cav-1(-/-) mice. Utilizing prostate carcinoma cell lines (C1, C2, and C3) derived from TRAMP tumors, we also showed a positive correlation between Cav-1 expression and the ability of these cells to form tumors in vivo. Furthermore, down-regulation of Cav-1 expression in these cells, using a small interfering RNA approach, significantly reduced their tumorigenic and metastatic potential. Mechanistically, we showed that loss or down-regulation of Cav-1 expression results in increased apoptosis, with increased prostate apoptosis response factor-4 and PTEN levels in Cav-1(-/-) null prostate tumors. Our current findings provide the first in vivo molecular genetic evidence that Cav-1 does indeed function as a tumor promoter during prostate carcinogenesis, rather than as a tumor suppressor.  相似文献   

13.
During prostate cancer progression, invasive glandular epithelial cells move out of the ductal-acinar architecture and through the surrounding basement membrane. Extracellular matrix proteins and associated soluble factors in the basal lamina and underlying stroma are known to be important regulators of prostate cell behaviors in both normal and malignant tissues. In this study, we assessed cell interactions with extracellular matrix and stromal factors during disease progression by characterizing integrin usage and expression in a series of parental and lineage-derived LNCaP human prostate cancer cell lines. Although few shifts in integrin expression were found to accompany disease progression, integrin heterodimer usage did change significantly. The more metastatic sublines were distinct in their use of alphavbeta3 and, when compared with parental LNCaP cells, showed a shift in alpha6 heterodimerization, a subunit critical not only for interaction with prostate basal lamina but also for interaction with the bone matrix, a favored site of prostate cancer metastases.  相似文献   

14.
Disseminated prostate cancer (PCa) is known to have a strong propensity for bone marrow. These disseminated tumor cells (DTCs) can survive in bone marrow for years without obvious proliferation, while maintaining the ability to develop into metastatic lesions. However, how DTCs kept dormant and recur is still uncertain. Here, we focus on the role of osteoblastic protein kinase D1 (PKD1) in PCa (PC-3 and DU145) dormancy using co-culture experiments. Using flow cytometry, western blotting, and immunofluorescence, we observed that in co-cultures osteoblasts could induce a dormant state in PCa cells, which is manifested by a fewer cell divisions, a decrease Ki-67-positive populations and a lower ERK/p38 ratio. In contrast, silencing of PKD1 gene in osteoblasts impedes co-cultured prostate cancer cell's dormancy ability. Mechanismly, protein kinase D1 (PKD1) in osteoblasts induces PCa dormancy via activating CREB1, which promoting the expression and secretion of growth arrest specific 6 (GAS6). Furthermore, GAS6-induced dormancy signaling significantly increased the expression of core circadian clock molecules in PCa cells, and a negative correlation of circadian clock proteins (BMAL1, CLOCK and DEC2) with recurrence-free survival is observed in metastatic prostate cancer patients. Interestingly, the expression of cell cycle factors (p21, p27, CDK1 and PCNA) which regulated by circadian clock also upregulated in response to GAS6 stimulation. Taken together, we provide evidence that osteoblastic PKD1/CREB1/GAS6 signaling regulates cellular dormancy of PCa cells, and highlights the importance of circadian clock in PCa cells dormancy.  相似文献   

15.
The anti-androgens used in prostate cancer therapy have been designed to interfere with the normal androgen receptor (AR)-mediated processes that ensure prostate cell survival, triggering tumor cells to undergo programmed cell death. While anti-androgens were originally designed to treat advanced disease, they have recently been used to debulk organ-confined prostate tumors, to improve positive margins prior to surgery, and for chemoprevention in patients at high risk for prostate cancer. However, tumors treated with anti-androgens frequently become hormone refractory and acquire a more aggressive phenotype. Progression toward metastatic hormone-refractory disease has often been regarded as the outgrowth of a small number of hormone-independent cells that emerge from a hormone-dependent tumor during anti-androgen treatment by natural selection. While a number of selective advantages have recently been identified, there is also considerable evidence suggesting that the progression toward metastatic hormone-refractory disease is an dynamic process which involves abrogation of programmed cell death as a result of the attenuation of DNA fragmentation and maintenance of mitochondrial membrane potential in tumor cells; the upregulation of stromal-mediated growth factor signaling pathways; and the upregulation of extracellular matrix (ECM) protease expression.  相似文献   

16.
It is a long-standing clinical observation that the bone corresponds to the prevalent site for metastatic growth of prostate cancer. In addition, bone metastases of this malignancy produce a potent blastic reaction, in contrast to the overwhelming majority of other osteotropic neoplasms, whose metastases are generally associated with an osteolytic reaction. Osteoblastic metastases represent almost always the first and, frequently, the exclusive site of disease progression to hormone refractory stage, stage D3. Moreover, the number of skeletal metastatic foci is the most powerful independent prognostic factor associated with a limited response to hormone ablation therapy and poor survival of advanced prostate cancer. It is noteworthy that disease progression to hormone refractory stage occurs almost always in osteoblastic metastases. These clinical observations suggested that the osteoblastic reaction is possibly not an innocent bystander of the metastatic prostate tumour growth, simply suffering its consequences, but it may in fact facilitate the efforts of metastatic cells to expand their population. An extensive line of research in the pathophysiology of osteoblastic metastases has established that the local blastic reaction involves the uPA/plasmin/IGF/IGFBP-3/TGFbs bioregulation system which can stimulate both the growth of osteoblasts and prostate cancer cells. Furthermore, we were the first to characterize osteoblast-derived 'survival factors' able to rescue metastatic prostate cancer cells from chemotherapy-induced apoptosis. These data resulted in the development of a novel concept of an anti-survival factor therapy, namely an anti-IGF-1 therapy, which has provided encouraging preliminary data in a phase II clinical trial with terminally-ill hormone/chemotherapy-resistant prostate cancer patients.  相似文献   

17.
Metastasis represents the ultimate target in cancer therapy as this complex biological process is the direct cause of mortality for a variety of human malignancies. The current high level of mortality from prostate cancer results in large part from the inexorable growth of overt or occult metastasis present at the time of diagnosis. Currently, there are no curative therapies for metastatic prostate cancer. To better understand the metastatic phenotype in prostate cancer, we developed a strategy to identify mRNAs that are expressed differentially in cell lines derived from primary versus metastatic mouse prostate cancer using differential display-PCR. In using this system a number of metastasis-related sequences were identified including a cDNA that encodes caveolin-1. Caveolin-1 was found to be overexpressed not only in metastatic mouse prostate cancer, but also in human metastatic disease. Recent studies have indicated that suppression of caveolin-1 expression induces androgen sensitivity in high caveolin-1, androgen-insensitive mouse prostate cancer cells derived from metastases. Conversely, overexpression of caveolin-1 leads to androgen insensitivity in low caveolin, androgen-sensitive mouse prostate cancer cells. Caveolin-1, therefore, is both a metastasis-related gene as well as a candidate androgen resistance gene for prostate cancer in man. Interestingly, recent studies also point to a potential role for caveolin-1 in the resistance of various malignancies to multiple antineoplastic agents. The linkage of caveolin-1 expression with the androgen-resistant phenotype in prostate cancer and the multidrug resistance phenotype in various solid tumors establishes a novel paradigm for understanding these clinically important and now potentially related processes in malignant progression.  相似文献   

18.
19.

Background

Currently available methods for diagnosis and staging of prostate cancer lack the sensitivity to distinguish between patients with indolent prostate cancer and those requiring radical treatment. Alterations in key adherens (AJ) and tight junction (TJ) components have been hailed as potential biomarkers for prostate cancer progression but the majority of research has been carried out on individual molecules.

Objective

To elucidate a panel of biomarkers that may help distinguish dormant prostate cancer from aggressive metastatic disease.

Methods

We analysed the expression of 7 well known AJ and TJ components in cell lines derived from normal prostate epithelial tissue (PNT2), non-invasive (CAHPV-10) and invasive prostate cancer (LNCaP, DU145, PC-3) using gene expression, western blotting and immunofluorescence techniques.

Results

Claudin 7, α –catenin and β-catenin protein expression were not significantly different between CAHPV-10 cells and PNT2 cells. However, in PC-3 cells, protein levels for claudin 7, α –catenin were significantly down regulated (−1.5 fold, p = <.001) or undetectable respectively. Immunofluoresence showed β-catenin localisation in PC-3 cells to be cytoplasmic as opposed to membraneous.

Conclusion

These results suggest aberrant Claudin 7, α – and β-catenin expression and/or localisation patterns may be putative markers for distinguishing localised prostate cancer from aggressive metastatic disease when used collectively.  相似文献   

20.

Purpose

Clinicopathologic features and biochemical recurrence are sensitive, but not specific, predictors of metastatic disease and lethal prostate cancer. We hypothesize that a genomic expression signature detected in the primary tumor represents true biological potential of aggressive disease and provides improved prediction of early prostate cancer metastasis.

Methods

A nested case-control design was used to select 639 patients from the Mayo Clinic tumor registry who underwent radical prostatectomy between 1987 and 2001. A genomic classifier (GC) was developed by modeling differential RNA expression using 1.4 million feature high-density expression arrays of men enriched for rising PSA after prostatectomy, including 213 who experienced early clinical metastasis after biochemical recurrence. A training set was used to develop a random forest classifier of 22 markers to predict for cases - men with early clinical metastasis after rising PSA. Performance of GC was compared to prognostic factors such as Gleason score and previous gene expression signatures in a withheld validation set.

Results

Expression profiles were generated from 545 unique patient samples, with median follow-up of 16.9 years. GC achieved an area under the receiver operating characteristic curve of 0.75 (0.67–0.83) in validation, outperforming clinical variables and gene signatures. GC was the only significant prognostic factor in multivariable analyses. Within Gleason score groups, cases with high GC scores experienced earlier death from prostate cancer and reduced overall survival. The markers in the classifier were found to be associated with a number of key biological processes in prostate cancer metastatic disease progression.

Conclusion

A genomic classifier was developed and validated in a large patient cohort enriched with prostate cancer metastasis patients and a rising PSA that went on to experience metastatic disease. This early metastasis prediction model based on genomic expression in the primary tumor may be useful for identification of aggressive prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号