首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pain-relieving effect of vibratory stimulation, using different stimulus parameters, and placebo stimulation in acute orofacial pain is reported. The influence of 10-, 100-, and 200-Hz vibrations on pain reduction was studied in 96 patients; two different probe sizes were used. 54 out of 76 patients, receiving vibrations at any of the above frequencies, reported relief of pain to some extent, while only 6 out of 20 patients receiving placebo treatment experienced pain alleviation. No significant differences were found between the different frequencies and probe sizes used regarding the pain-relieving effect. However, placebo stimulation was significantly less effective than any kind of vibratory stimulation. Induction time for pain relief was significantly shorter using the larger probe as compared to using the smaller probe, regardless of frequency. The results indicate that the vibratory frequency (10-200 Hz) for activation of pain-inhibitory mechanisms is not critical in acute orofacial pain. Also, spatial summation from vibration-sensitive afferents seems to be of importance for a fast activation of the inhibitory systems.  相似文献   

2.
We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequencies increased linearly in response to increasing stretch lengths to accurately encode the magnitude of muscle stretch (tested at 2.5%, 5% and 7.5% of resting length [Lo]). Peak firing frequency increased with ramp speeds (20% Lo/sec, 40% Lo/sec, and 60% Lo/sec). As a population, muscle spindle afferents could entrain 1:1 to sinusoidal vibrations throughout the frequency (10-100 Hz) and amplitude ranges tested (5-100 μm). Most units preferentially entrained to vibration frequencies close to their baseline steady-state firing frequencies. Cooling the muscle to 24°C decreased baseline firing frequency and units correspondingly entrained to slower frequency vibrations. The ramp component of stretch generated dynamic firing responses. These responses and related measures of dynamic sensitivity were not able to categorize units as primary (group Ia) or secondary (group II) even when tested with more extreme length changes (10% Lo). We conclude that the population of spindle afferents combines to encode stretch in a smoothly graded manner over the physiological range of lengths and speeds tested. Overall, spindle afferent response properties were comparable to those seen in other species, supporting subsequent use of the mouse genetic model system for studies on spindle function and dysfunction in an isolated muscle-nerve preparation.  相似文献   

3.
Thresholds were measured for the detection of vibratory stimuli of variable frequency and duration applied to the index fingertip and thenar eminence through contactors of different sizes. The effects of stimulus frequency could be accounted for by the frequency characteristics of the Pacinian (P), non-Pacinian (NP) I, and NP III channels previously determined for the thenar eminence (Bolanowski et al., J Acoust Soc Am 84 : 1680-1694, 1988; Gescheider et al., Somatosens Mot Res 18: 191- 201, 2001). The effect of changing stimulus duration was also essentially identical for both sites, demonstrating the same amount of temporal summation in the P channel. Although the effect of changing stimulus frequency and changing stimulus duration did not differ for the two sites, the effect of varying the size of the stimulus was significantly greater for the thenar eminence than for the fingertip. The attenuated amount of spatial summation on the fingertip was interpreted as an indication that the mechanism of spatial summation consists of the operations of both neural integration and probability summation.  相似文献   

4.
Thresholds were measured for the detection of vibratory stimuli of variable frequency and duration applied to the index fingertip and thenar eminence through contactors of different sizes. The effects of stimulus frequency could be accounted for by the frequency characteristics of the Pacinian (P), non-Pacinian (NP) I, and NP III channels previously determined for the thenar eminence (Bolanowski et al., J Acoust Soc Am 84: 1680-1694, 1988; Gescheider et al., Somatosens Mot Res 18: 191-201, 2001). The effect of changing stimulus duration was also essentially identical for both sites, demonstrating the same amount of temporal summation in the P channel. Although the effect of changing stimulus frequency and changing stimulus duration did not differ for the two sites, the effect of varying the size of the stimulus was significantly greater for the thenar eminence than for the fingertip. The attenuated amount of spatial summation on the fingertip was interpreted as an indication that the mechanism of spatial summation consists of the operations of both neural integration and probability summation.  相似文献   

5.
The femoral chordotonal organ in orthopterans signals proprioceptive sensory information concerning the femur-tibia joint to the central nervous system. In the stick insect, 80 out of 500 afferents sense tibial position, velocity, or acceleration. It has been assumed that the other sensory cells in the chordotonal organ would serve as vibration detectors. Extracellular recordings from the femoral chordotonal organ nerve in fact revealed a sensitivity of the sense organ for vibrations with frequencies ranging from 10 Hz to 4 kHz, with a maximum sensitivity between 200 and 800 Hz. Single vibration-sensitive afferents responded to the same range of frequencies. Their spike activity depended on acceleration amplitude and displacement amplitude of the vibration stimulus. Additionally, 80% of the vibration-sensitive afferents received indirect presynaptic inputs from themselves or from other afferents of the femoral chordotonal organ, the amplitude of which depended on stimulus frequency and displacement amplitude. They were associated with a decrease of input resistance in the afferent terminal. From the present investigation we conclude that the femoral chordotonal organ of the stick insect is a bifunctional sensory organ that, on the one hand, measures position and movement of the tibia and, on the other hand, detects vibration of the tibia. Accepted: 6 November 1998  相似文献   

6.
The Asopinae (Heteroptera: Pentatomidae) are a subfamily of stinkbugs with predaceous feeding habits and poorly understood communication systems. In this study we recorded vibratory signals emitted by Picromerus bidens L. on a non-resonant substrate and investigated their frequency characteristics. Males and females produced signals by vibration of the abdomen and tremulation. The female and male songs produced by abdominal vibrations showed gender-specific time structure. There were no differences in the temporal patterns of male or female tremulatory signals. The signals produced by abdominal vibrations were emitted below 600 Hz whereas tremulatory signals had frequency ranges extending up to 4 kHz. Spectra of male vibratory signals produced by abdominal vibrations contained different peaks, each of which may be dominant within the same song sequence. Males alternated with each other during production of rivalry signals, using different dominant frequency levels. We show that the vibratory song repertoire of P. bidens is broader than those of other predatory stinkbugs that have been investigated. The emission of vibrational signals with different dominant frequencies but the same production mechanism has not yet been described in heteropteran insects, and may facilitate location of individual sources of vibration within a group.  相似文献   

7.
The reduction in vibrotactile sensitivity in the fingertip is assumed to be associated with the exposure of the tissues to repetitive, non-physiological strains during dynamic loading. Experimental results demonstrated that the magnitude of a vibration-induced temporary threshold shift is dependent upon the vibration frequency of both the exposure and testing stimuli. In the present study, the frequency-dependent strain imposed on cutaneous and subcutaneous tissues of the fingertip is analyzed theoretically using a finite element model. The proposed fingertip model is two-dimensional and includes major anatomical substructures: skin, subcutaneous tissue, bone, and nail. The soft tissues (skin and subcutaneous tissues) were assumed to be nonlinearly elastic and viscoelastic, while the bone and nail were considered as linearly elastic. Simulations were performed for the contact between the fingertip and a flat surface for four different pre-compressions (0.5, 1.0, 1.5, and 2.0 mm). The frequency-dependent distributions of the dynamic strain magnitudes in the soft tissues were investigated. The model predictions indicated that the vibration exposure at a frequency range from 63 to 250 Hz will induce excessive dynamic strain in the deep zone of the finger tissues, effectively inhibiting the high-frequency mechanoreceptors; while the vibration exposure at low frequency (less than 31.5 Hz) tends to induce excessive dynamic strain in superficial layer in the tissues, inhibiting the low-frequency mechanoreceptors. These theoretical predictions are consistent with the experimental observations in literature. The proposed model can be used to predict the responses of the soft tissues in different depths to vibration exposures, providing valuable information and data that are essential for improving vibrotactile perception tests.  相似文献   

8.
The use of substrate vibrations in communication and predator-prey interactions is widespread in arthropods. In many contexts, localization of the vibration source plays an important role. For small species on solid substrates, time and amplitude differences between receptors in different legs may be extremely small, and the mechanisms of vibration localization are unclear. Here we ask whether directional information is contained in the mechanical response of an insect's body to substrate vibration. Our study species was a membracid treehopper (Umbonia crassicornis) that communicates using bending waves in plant stems. We used a bending-wave simulator that allows precise control of the frequency, intensity and direction of the vibrational stimulus. With laser-Doppler vibrometry, we measured points on the substrate and on the insect's thorax and middle leg. Transfer functions showing the response of the body relative to the substrate revealed resonance at lower frequencies and attenuation at higher frequencies. There were two modes of vibration along the body's long axis, a translational and a rotational mode. Furthermore, the transfer functions measured on the body differed substantially depending on whether the stimulus originated in front of or behind the insect. Directional information is thus available in the mechanical response of the body of these insects to substrate vibration. These results suggest a vibration localization mechanism that could function at very small spatial scales.  相似文献   

9.
10.
We analyzed human postural responses to muscle vibration applied at four different frequencies to lower leg muscles, the lateral gastrocnemius (GA) or tibialis anterior (TA) muscles. The muscle vibrations induced changes in postural orientation characterized by the center of pressure (CoP) on the force platform surface on which the subjects were standing. Unilateral vibratory stimulation of TA induced body leaning forward and in the direction of the stimulated leg. Unilateral vibration of GA muscles induced body tilting backwards and in the opposite direction of the stimulated leg. The time course of postural responses was similar and started within 1 s after the onset of vibration by a gradual body tilt. When a new slope of the body position was reached, oscillations of body alignment occurred. When the vibrations were discontinued, this was followed by rapid recovery of the initial body position. The relationship between the magnitude of the postural response and frequency of vibration differed between TA and GA. While the magnitude of postural responses to TA vibration increased approximately linearly in the 60-100 Hz range of vibration frequency, the magnitude of response to GA vibration increased linearly only at lower frequencies of 40-60 Hz. The direction of body tilt induced by muscle vibration did not depend on the vibration frequency.  相似文献   

11.
Using a model of spike generator mechanism (SGM) with a variable threshold we simulate the responses of utricular afferents to sinusoidal vibrations. It reproduces the phase locking characteristics (bifurcations diagrams) and the stimulus frequency firing rate relationships of different types of utricular afferents. We estimate the model parameters selecting the values which best fit the experimental results and we compare them with those from basic mechanisms involved in utricular codification.  相似文献   

12.
The purpose of this study was to develop a method to characterize the frequency and damping of vibrations in the soft tissues of the leg. Vibrations were measured from a surface-mounted accelerometer attached to the skin overlying the quadriceps muscles. The free vibrations in this soft tissue were recorded after impact whilst the muscle was performing isometric contractions at 0, 50, and 100% maximum voluntary force and with the knee held at 20, 40, and 60 degrees angles of flexion. The acceleration signals indicated that the soft tissue oscillated as under-damped vibrations. The frequency and damping coefficients for these vibrations were estimated from a model of sinusoidal oscillations with an exponential decay. This technique resolved the vibration coefficients to 2 and 7% of the mean values for frequency and damping, respectively.  相似文献   

13.
Pacinian corpuscles (PCs) in cat mesentery have been studied extensively to help determine the structural and functional bases of tactile mechanotransduction. Although we, like many other investigators, have found that the mesenteric receptors are anatomically very similar to those found in mammalian skin, few physiological characteristics of the mesenteric PCs and those of the skin have been compared. Action-potential rate-amplitude and frequency characteristics (10 Hz–1 KHz), as well as interval (IH) and peri-stimulus-time (PSTH) histograms in response to sinusoidal displacements were obtained from nerve fibers innervating mesenteric PCs and from PC fibers innervating cat glabrous skin. The intensity characteristics obtained on both preparations showed similar response profiles, including equal slopes for low stimulus intensities (approximately 10, with impulse ratios/20 dB displacement) and one and two impulse/cycle entrainment. The frequency characteristics of both groups were U-shaped with similar low-frequency slopes (?12.5 dB/octave) and bandwidths (Q3dB = 1.4). The best frequency for both the tactile PCs' and mesenteric PCs was 250 Hz, which is in the expected range. The IHs showed entrainment and the PSTHs showed neither transient responses nor adaptation to steady-state sinusoidal stimuli. The functional similarity between mesenteric PCs' nerve responses and those of tactile PC afferents, as well as the receptors’ anatomical similarity, lead us to suggest that the mesenteric PC can act as a model for those in the skin. Furthermore, since the frequency characteristics of the two PC types are similar, it is concluded that the skin, while attenuating stimulus intensity, does not impart temporal filtering of vibratory stimuli.  相似文献   

14.
Spike discharge activity was recorded from low-threshold, rapidly adapting, skin mechanoreceptive afferents (RA afferents) dissected from the median (forelimb) or tibial (hindlimb) nerves in anesthetized monkeys and cats. The spike activity was evoked by delivery of controlled sinusoidal vertical skin displacement ("flutter") stimuli to the receptive field (RF). The stimuli (15-30 Hz; 30-400 microm peak-to-peak amplitude; duration 0.8-15 s) were superimposed on a static skin indentation (0.5-1.0 mm) which was either maintained continuously throughout the run or applied trial-by-trial. The neural activity and the analog signal of the position of the stimulator probe were digitized at 10 kHz resolution and stored for off-line analysis. The main goal was to determine whether changes in the RA afferent response to skin flutter stimulation may be responsible for the enhanced capacity to discriminate stimulus frequency that accompanies a relatively brief (approximately 1 min) pre-exposure to such stimulation in humans. To this end, the spike train data were evaluated using methods that enabled independent measurement of entrainment and responsivity. Responsivity (response intensity) was measured as the average number of spikes/stimulus cycle, while entrainment (the degree to which evoked spike train activity is phase-locked to the stimulus) was quantitatively assessed using statistical techniques developed for the analysis of "circular" (directional) data, supplemented by methods based on the calculation of power spectra from point process data. The methods are demonstrated to enable quantification of RA afferent entrainment over a range of stimulus durations and amplitudes substantially greater than reported in previous studies. While RA afferent responsivity was found to decline to a minor extent (10-20%) both across and within stimulus trials, entrainment remained consistently high and stable, and exhibited no temporal trends or dependence on any other measured factor. The average phase angle of the entrained RA afferent response also remained stable both within and across trials, showing only a tendency to increase slightly during the initial 100-500 ms after stimulus onset. The results imply that the improved capacity to discriminate stimulus frequency that develops in response to an exposure to cutaneous flutter stimulation is not attributable to a change in RA afferent entrainment per se.  相似文献   

15.
Spike discharge activity was recorded from low-threshold, rapidly adapting, skin mechanoreceptive afferents (RA afferents) dissected from the median (forelimb) or tibial (hindlimb) nerves in anesthetized monkeys and cats. The spike activity was evoked by delivery of controlled sinusoidal vertical skin displacement ("flutter") stimuli to the receptive field (RF). The stimuli (15-30 Hz; 30-400 mum peak-to-peak amplitude; duration 0.8-15 s) were superimposed on a static skin indentation (0.5-1.0 mm) which was either maintained continuously throughout the run or applied trial-by-trial. The neural activity and the analog signal of the position of the stimulator probe were digitized at 10 kHz resolution and stored for off-line analysis. The main goal was to determine whether changes in the RA afferent response to skin flutter stimulation may be responsible for the enhanced capacity to discriminate stimulus frequency that accompanies a relatively brief (approximately equal to 1 min) pre-exposure to such stimulation in humans. To this end, the spike train data were evaluated using methods that enabled independent measurement of entrainment and responsivity. Responsivity (response intensity) was measured as the average number of spikes/stimulus cycle, while entrainment (the degree to which evoked spike train activity is phase-locked to the stimulus) was quantitatively assessed using statistical techniques developed for the analysis of "circular" (directional) data, supplemented by methods based on the calculation of power spectra from point process data. The methods are demonstrated to enable quantification of RA afferent entrainment over a range of stimulus durations and amplitudes substantially greater than reported in previous studies. While RA afferent responsivity was found to decline to a minor extent (10-20%) both across and within stimulus trials, entrainment remained consistently high and stable, and exhibited no temporal trends or dependence on any other measured factor. The average phase angle of the entrained RA afferent response also remained stable both within and across trials, showing only a tendency to increase slightly during the initial 100-500 ms after stimulus onset. The results imply that the improved capacity to discriminate stimulus frequency that develops in response to an exposure to cutaneous flutter stimulation is not attributable to a change in RA afferent entrainment per se.  相似文献   

16.
Leaf-borne vibrations are potentially important to caterpillars for communication and risk assessment. Yet, little is known about the vibratory environment of caterpillars, or how they detect and discriminate between vibrations from relevant and non-relevant sources. We measured the vibratory ‘landscape’ of the territorial masked birch caterpillar Drepana arcuata (Drepanidae), and assessed its ability to detect and respond to vibrations generated by conspecific and predatory intruders, wind and rain. Residents of leaf shelters were shown to respond to low amplitude vibrations generated by a crawling conspecific intruder, since removal of the vibrations through leaf incision prevented the resident’s response. Residents did not respond to large amplitude, low frequency disturbances caused by wind and rain alone, but did respond to approaching conspecifics under windy conditions, indicating an ability to discriminate between these sources. Residents also responded differently in the presence of vibrations generated by approaching predators (Podisus) and conspecifics. An analysis of vibration characteristics suggests that despite significant overlap between vibrations from different sources, there are differences in frequency and amplitude characteristics that caterpillars may use to discriminate between sources. Caterpillars live in a vibration-rich environment that we argue forms a prominent part of the sensory world of substrate bound holometabolous larvae.  相似文献   

17.
Pacinian corpuscles (PCs) in cat mesentery have been studied extensively to help determine the structural and functional bases of tactile mechanotransduction. Although we, like many other investigators, have found that the mesenteric receptors are anatomically very similar to those found in mammalian skin, few physiological characteristics of the mesenteric PCs and those of the skin have been compared. Action-potential rate-amplitude and frequency characteristics (10 Hz-1 KHz), as well as interval (IH) and peri-stimulus-time (PSTH) histograms in response to sinusoidal displacements were obtained from nerve fibers innervating mesenteric PCs and from PC fibers innervating cat glabrous skin. The intensity characteristics obtained on both preparations showed similar response profiles, including equal slopes for low stimulus intensities (approximately 10, with impulse ratios/20 dB displacement) and one and two impulse/cycle entrainment. The frequency characteristics of both groups were U-shaped with similar low-frequency slopes (-12.5 dB/octave) and bandwidths (Q(3dB) = 1.4). The best frequency for both the tactile PCs' and mesenteric PCs was 250 Hz, which is in the expected range. The IHs showed entrainment and the PSTHs showed neither transient responses nor adaptation to steady-state sinusoidal stimuli. The functional similarity between mesenteric PCs' nerve responses and those of tactile PC afferents, as well as the receptors' anatomical similarity, lead us to suggest that the mesenteric PC can act as a model for those in the skin. Furthermore, since the frequency characteristics of the two PC types are similar, it is concluded that the skin, while attenuating stimulus intensity, does not impart temporal filtering of vibratory stimuli.  相似文献   

18.
Running our fingers across a textured surface gives rise to two types of skin deformations, each transduced by different tactile nerve fibers. Coarse features produce large-scale skin deformations whose spatial configuration is reflected in the spatial pattern of activation of some tactile fibers. Scanning a finely textured surface elicits vibrations in the skin, which in turn evoked temporally patterned responses in other fibers. These two neural codes—spatial and temporal—drive a spectrum of neural response properties in somatosensory cortex: At one extreme, neurons are sensitive to spatial patterns and encode coarse features; at the other extreme, neurons are sensitive to vibrations and encode fine features. While the texture responses of nerve fibers are dependent on scanning speed, those of cortical neurons are less so, giving rise to a speed invariant texture percept. Neurons in high-level somatosensory cortices combine information about texture with information about task variables.  相似文献   

19.
Dipteran flight requires rapid acquisition of mechanosensory information provided by modified hindwings known as halteres. Halteres experience torques resulting from Coriolis forces that arise during body rotations. Although biomechanical and behavioral data indicate that halteres detect Coriolis forces, there are scant data regarding neural encoding of these or any other forces. Coriolis forces arise on the haltere as it oscillates in one plane while rotating in another, and occur at oscillation frequency and twice the oscillation frequency. Using single-fiber recordings of haltere primary afferent responses to mechanical stimuli, we show that spike rate increases linearly with stimulation frequency up to 150 Hz, much higher than twice the natural oscillation frequency of 40 Hz. Furthermore, spike-timing precision is extremely high throughout the frequency range tested. These characteristics indicate that afferents respond with high speed and high precision, neural features that are useful for detecting Coriolis forces. Additionally, we found that neurons respond preferentially to specific stimulus directions, with most responding more strongly to stimulation in the orthogonal plane. Directional sensitivity, coupled with precise, high-speed encoding, suggests that haltere afferents are capable of providing information about forces occurring at the haltere base, including Coriolis forces.  相似文献   

20.
In solitary plant-dwelling stink bug species, success depends crucially on efficient mate location and recognition, mediated by signals transmitted through the plant. All stink bugs investigated so far communicate with species and sex-specific narrow-band calling and courtship song signals produced by abdomen vibration. Calling songs of lower specificity are characterized by readily repeated units emitted with regular repetition rate from the same place on a plant, while courtship songs take place at shorter distances in the process of species and sex recognition, together with signals of other modalities. Signal spectra with about 100Hz fundamental frequency and harmonics below 1000Hz are tuned to the resonant properties of their green host plants. The majority of the identified leg vibratory receptor cells and the underlying ventral cord interneurons respond best in the frequency range below 500Hz. Green plants with low pass filtering properties transmit optimally signals with a dominant frequency around 100Hz and strongly attenuate vibrations above 600Hz. Accurate tuning of signal spectral properties with the plant's mechanical characteristics enables communication over several meter distances, with dispersive bending waves running through the plant's rod-like structures under standing wave conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号