首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bradyrhizobium japonicum can form a N2-fixing symbiosis with compatible leguminous plants. It can also act as a plant-growth promoting rhizobacterium (PGPR) for non-legume plants, possibly through production of lipo-chitooligosaccharides (LCOs), which should have the ability to induce disease resistance responses in plants. The objective of this work was to determine whether non-leguminous crop plants can induce LCO formation by B. japonicum cultures. Cultures treated with root extracts of soybean, corn, cotton or winter wheat were assayed for presence and level of LCO. Root extracts of soybean, corn and winter wheat all induced LCO production, with extracts of corn inducing the greatest amounts. Root washings of corn also induced LCO production, but less than the root extract. These results indicated that the stimulation of non-legume plant growth by B. japonicum could be through the production of LCOs, induced by materials excreted by the roots of non-legume plants.  相似文献   

3.
Production of Bradyrhizobium japonicum inoculants is problematic because high inoculation rates are necessary but expensive, while production of rhizobial Nod factors (lipo-chitooligosaccharides (LCOs)), key signal molecules in the establishment of legume-rhizobia symbioses, may be inhibited at high culture cell densities. We conducted experiments to determine the effects of growth medium N source on B. japonicum growth, LCO production, and early nodulation of soybean. We found that 1.57 mmol ammonium nitrate x L(-1) resulted in less rhizobial growth and rhizobial capacity to produce LCOs (on a per cell basis) than did 0.4 g yeast extract x L(-1), which contained the same amount of N as the ammonium nitrate. Increasing yeast extract to 0.8 g x L(-1) increased rhizobial growth and LCO production on a volume basis (per litre of culture) and did not affect cell capacity to produce LCOs; however, at 1.4 g yeast extract x L(-1) per cell, production was reduced. A mixture of 0.8 g yeast extract x L(-1) and 1.6 g casein hydrolysate x L(-1) resulted in the greatest bacterial growth and LCO production on a volume basis but reduced LCO production per cell. Changes in organic N level and source increased production of some of the measured LCOs more than others. LCO production was positively correlated with cell density when expressed on a volume basis; however, it was negatively correlated on a per cell basis. We conclude that although quorum sensing affected Nod factor production, increased levels of organic N, and specific compositions of organic N, increased LCO production on a volume basis. Greenhouse inoculation experiments showed that the medium did not modify nodule number and N fixation in soybean, suggesting that it could have utility in inoculant production.  相似文献   

4.
5.
A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.  相似文献   

6.
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.  相似文献   

7.
Chemotaxis of Bradyrhizobium japonicum to soybean exudates.   总被引:5,自引:1,他引:4       下载免费PDF全文
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only dicarboxylic acids and the amino acids glutamate and aspartate were strong attractants. The presence of glutamate, aspartate, and dicarboxylic acids in appreciable concentrations in soybean seed and root exudates indicates that these compounds likely represent natural chemoattractants for B. japonicum.  相似文献   

8.
9.
Chemotaxis of Bradyrhizobium japonicum to soybean exudates.   总被引:1,自引:0,他引:1  
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only dicarboxylic acids and the amino acids glutamate and aspartate were strong attractants. The presence of glutamate, aspartate, and dicarboxylic acids in appreciable concentrations in soybean seed and root exudates indicates that these compounds likely represent natural chemoattractants for B. japonicum.  相似文献   

10.
11.
Soybean [Glycine max (L.) Merr.] forms a symbiosis with serogroups of Bradyrhizobium japonicum that differ in their dinitrogen fixing abilities. The objectives of this study were to identify soybean genotypes that would restrict nodulation by relatively inefficient serogroups indigenous to a large portion of the southeastern USA, and then characterize the nodulation responses of selected genotypes with specific bradyrhizobial strains under controlled conditions. From field screening trials followed by controlled single and competitive inoculations of serogroups USDA 31, 76 and 110, twelve soybean genotypes out of 382 tested were identified with varying levels of exclusion abilities. Soybean nodule occupancies and nodulation characteristics were influenced by plant genotype, environment (i.e. field or greenhouse), bradyrhizobial serogroup, and location of nodules (i.e. tap or lateral root). The cultivar Centennial sustains high seed yields even though it nodulates to a high degree with the inefficient serogroup USDA 31. In contrast, data from the released cultivars Braxton, Centennial and Coker 368 indicate that they may have been selected to exclude the inefficient serogroup USDA 76 from their tap root nodules, possibly contributing to high seed yield.  相似文献   

12.
13.
The significance of Bradyrhizobium japonicum upstream activator sequences (UASs) for differential NifA-mediated fix and nif gene expression was investigated by two means: (i) hybrid fixA- and fixB-lacZ fusions were constructed by transposing a nifH-UAS cartridge in front of their promoters; and (ii) B. japonicum mutants were generated carrying specific chromosomal deletions or UAS cartridge insertions within the fixA, fixB or nifH promoter-upstream regions. Expression of fixA was not affected, and expression of fixB decreased only to 42%, when the respective fixA and fixB promoter-upstream DNAs were deleted. This shows that in B. japonicum the NifA-dependent activation of at least the fixA promoter does not require the presence of a closely adjacent UAS. Deletion of the UASs in front of the nifH gene not only reduced the expression of nifH down to 2.5% but, surprisingly, also resulted in a reduction of the fixB mRNA level to less than 20%. This suggests that the nifH-UASs may exert a long-range effect on the expression of the 3-kb-distant fixBCX operon in nif cluster I or B. japonicum. Artificial transposition of the nifH-UASs in front of the fixA and fixB promoters strongly enhanced fixA and fixB expression.  相似文献   

14.
Bradyrhizobium japonicum produces delta-aminolevulinic acid, the universal precursor of tetrapyrroles, in a reaction catalyzed by the product of the hemA gene. Expression of the B. japonicum hemA gene is affected by iron availability. Activity of a hemA-lacZ fusion is increased approximately threefold by iron, and RNA analysis indicates that iron regulation is at the level of mRNA accumulation. To our knowledge, this is the first example of an iron-regulated heme biosynthetic gene in prokaryotes.  相似文献   

15.
Complementation analysis showed that the Bradyrhizobium japonicum hemH gene was both necessary and sufficient to rescue mutant strains I110ek4 and I110bk2 in trans with respect to hemin auxotrophy, protoporphyrin accumulation, and the deficiency in ferrochelatase activity. The B. japonicum hemH gene was expressed in an Escherichia coli T7 expression system and yielded a 39-kDa protein, which was consistent with the predicted size of the deduced product. The overexpressed protein was purified and shown to contain ferrochelatase activity, thereby demonstrating that the hemH gene encodes ferrochelatase. When expressed from the lac promoter, the B. japonicum hemH gene was able to complement the enzyme activity of a ferrochelatase-defective E. coli mutant, and it also conferred hemin prototrophy on those cells. These latter findings confirm the identity of the hemH gene product and demonstrate that B. japonicum ferrochelatase can interact with the E. coli heme synthesis enzymes for heme formation in complemented cells.  相似文献   

16.
Two selective media proposed for the enumeration of Bradyrhizobium japonicum were tested using six strains of different origin and eight different commercial soybean inoculants. These media contained tetracycline, rifampicin and chloramphenicol to control bacterial contaminants, and cycloheximide and pimafucin to control fungal contaminants. They were compared with previously described selective media and plant infection technique counts. The proposed media provided better control of contaminants than previously described media, gave counts of B. japonicum similar to those obtained by the plant infection technique, and so may be used for quality control of commercial inoculants.  相似文献   

17.
Previous research has shown that a significant limitation to the agricultural use of improved rhizobial inoculant strains is competition from the indigenous soil population. In this work, we sought to test whether chemical inhibitors of flavonoid-induced nod gene expression in Bradyrhizobium japonicum could be identified and utilized to affect interstrain competition for nodulation of soybeans. Approximately 1,000 structural and functional analogs of the known, natural inducers of nod gene expression were tested on six strains of B. japonicum containing a nodY-lacZ fusion. We successfully identified effective inhibitors of nodY expression. The addition of the inhibitor 7-hydroxy-5-methylflavone significantly inhibited nodulation by a sensitive strain and could be used to effectively manipulate the competition between strains for soybean nodulation. However, this work also uncovered significant limitations for the practical use of this methodology. For example, despite the almost universal induction response to the identified natural inducers, there was a wide variability among strains in their response to any specific inhibitor. Given this unexpected variability, the cost of registration of an agronomic chemical, and the potential for the development of resistant field populations, it is unlikely that chemical inhibitors can be successfully applied to a field situation.  相似文献   

18.
19.
Commercial soybean inoculants processed with sterilised peat and stored at 20 °C for 1–8 years were used as experimental materials to assess the changes in the physiological activity of Bradyrhizobium japonicum after storage. Viable counts decreased and physiological characteristics of the bacterium changed during storage, with an increase in the time taken for colony appearance on a medium without yeast extract, an increase in the lag time for nodule appearance on soybean grown in glass tubes and a decrease in survival on seeds. All the inoculants produced a significant increase in grain yield in a field experiment. The percentage of efficient cells in the field (relative to the plate counts) decreased as the length of storage increased. These results suggest that the physiological activity of B. japonicum cells changes after storage. Practical implications for inoculant quality control are discussed. Received: 20 September 1999 / Received revision: 3 March 2000 / Accepted: 6 March 2000  相似文献   

20.
Strain-specific antisera were produced against six Bradyrhizobium japonicum strains using two immunization procedures. These specific antisera were used for detection of bradyrhizobia in preserved soybean nodules. Antisera specific for two of these strains were either conjugated with a fluorescent dye or used with a fluorescent secondary antibody for identification of bradyrhizobia in soybean nodules that were preserved in four different storage conditions. Results show that soybean nodules dried in the oven, stored under room temperature, or at –20 °C are as suitable as fresh nodules for strain identification using fluorescent antisera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号