首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanical function of dystrophin in muscle cells   总被引:12,自引:1,他引:11       下载免费PDF全文
We have directly measured the contribution of dystrophin to the cortical stiffness of living muscle cells and have demonstrated that lack of dystrophin causes a substantial reduction in stiffness. The inferred molecular structure of dystrophin, its preferential localization underlying the cell surface, and the apparent fragility of muscle cells which lack this protein suggest that dystrophin stabilizes the sarcolemma and protects the myofiber from disruption during contraction. Lacking dystrophin, the muscle cells of persons with Duchenne muscular dystrophy (DMD) are abnormally vulnerable. These facts suggest that muscle cells with dystrophin should be stiffer than similar cells which lack this protein. We have tested this hypothesis by measuring the local stiffness of the membrane skeleton of myotubes cultured from mdx mice and normal controls. Like humans with DMD mdx mice lack dystrophin due to an x-linked mutation and provide a good model for the human disease. Deformability was measured as the resistance to indentation of a small area of the cell surface (to a depth of 1 micron) by a glass probe 1 micron in radius. The stiffness of the membrane skeleton was evaluated as the increment of force (mdyne) per micron of indentation. Normal myotubes with an average stiffness value of 1.23 +/- 0.04 (SE) mdyne/micron were about fourfold stiffer than myotubes cultured from mdx mice (0.34 +/- 0.014 mdyne/micron). We verified by immunofluorescence that both normal and mdx myotubes, which were at a similar developmental stage, expressed sarcomeric myosin, and that dystrophin was detected, diffusely distributed, only in normal, not in mdx myotubes. These results confirm that dystrophin and its associated proteins can reinforce the myotube membrane skeleton by increasing its stiffness and that dystrophin function and, therefore, the efficiency of therapeutic restoration of dystrophin can be assayed through its mechanical effects on muscle cells.  相似文献   

2.
We use a highly specific and sensitive antibody to further characterize the distribution of dystrophin in skeletal, cardiac, and smooth muscle. No evidence for localization other than at the cell surface is apparent in skeletal muscle and no 427-kD dystrophin labeling was detected in sciatic nerve. An elevated concentration of dystrophin appears at the myotendinous junction and the neuromuscular junction, labeling in the latter being more intense specifically in the troughs of the synaptic folds. In cardiac muscle the distribution of dystrophin is limited to the surface plasma membrane but is notably absent from the membrane that overlays adherens junctions of the intercalated disks. In smooth muscle, the plasma membrane labeling is considerably less abundant than in cardiac or skeletal muscle and is found in areas of membrane underlain by membranous vesicles. As in cardiac muscle, smooth muscle dystrophin seems to be excluded from membrane above densities that mark adherens junctions. Dystrophin appears as a doublet on Western blots of skeletal and cardiac muscle, and as a single band of lower abundance in smooth muscle that corresponds most closely in molecular weight to the upper band of the striated muscle doublet. The lower band of the doublet in striated muscle appears to lack a portion of the carboxyl terminus and may represent a dystrophin isoform. Isoform differences and the presence of dystrophin on different specialized membrane surfaces imply multiple functional roles for the dystrophin protein.  相似文献   

3.
4.
5.
The phenotypic differences among Duchenne muscular dystrophy patients, mdx mice, and mdx5cv mice suggest that despite the common etiology of dystrophin deficiency, secondary mechanisms have a substantial influence on phenotypic severity. The differential response of various skeletal muscles to dystrophin deficiency supports this hypothesis. To explore these differences, gene expression profiles were generated from duplicate RNA targets extracted from six different skeletal muscles (diaphragm, soleus, gastrocnemius, quadriceps, tibialis anterior, and extensor digitorum longus) from wild-type, mdx, and mdx5cv mice, resulting in 36 data sets for 18 muscle samples. The data sets were compared in three different ways: (1) among wild-type samples only, (2) among all 36 data sets, and (3) between strains for each muscle type. The molecular profiles of soleus and diaphragm separate significantly from the other four muscle types and from each other. Fiber-type proportions can explain some of these differences. These variations in wild-type gene expression profiles may also reflect biomechanical differences known to exist among skeletal muscles. Further exploration of the genes that most distinguish these muscles may help explain the origins of the biomechanical differences and the reasons why some muscles are more resistant than others to dystrophin deficiency. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Judith N. Haslett, Peter B. Kang These authors contributed equally to this work.  相似文献   

6.
7.
目的 分析肾功能指标水平及肠道菌群分布对老年人群肌肉含量降低的影响,以期为提高老年人群肌肉含量提供新的思路。 方法 选取2017年6月至2019年6月于我院行生物电阻抗(BIA)检测的452例老年人为研究对象,根据BIA检测结果分别将男性和女性中BIA水平较低的前25%的对象作为低肌肉含量组(观察组),另外75%的对象作为肌肉含量正常组(对照组),采用全自动生化分析仪测定各组受试者尿微量白蛋白/肌酐(UACR)及肾小球滤过率(eGFR),采用实时荧光定量聚合酶链反应(FQ PCR)法检测粪便标本中菌群数量。 结果 观察组对象eGFR水平低于对照组(男性:t=6.543,P结论 老年人群肾功能受损及肠道菌群数量改变可能造成营养不良而导致肌肉含量降低。  相似文献   

8.
Summary Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is deficient in patients with DMD and in mdx mice. It is immunocytochemically localized in skeletal muscle sarcolemma. However, little is known about the three-dimensional ultrastructural localization of dystrophin and its relationship with other cytoskeletal proteins. We found that dystrophin is localized irregularly, just underneath the plasma membrane in normal cultured mouse myotubes, by using the quick-freezing and deep-etching (QF-DE) method; it was found to be closely linked to actin-like filaments (8–10 nm in diameter), most of which were decorated with myosin subfragment 1, and was attached to the cytoplasmic side of the plasma membrane. These results suggest that dystrophin might play an important role in the preservation of cell membrane stability by connecting actin cytoskeletons with the cytoplasmic side of the plasma membrane.  相似文献   

9.
It is thought that every cell in the body expresses the vitamin D receptor, and therefore vitamin D may play a role in health and homeostasis of every organ system, including skeletal muscle. Human, animal, and cell culture studies have collectively shown that vitamin D affects muscle strength and function. Vitamin D functions in a plethora of cellular processes in skeletal muscle including calcium homeostasis, cell proliferation, cell differentiation, fiber size, prevention of fatty degeneration, protection against insulin resistance and arachidonic acid mobilization. These processes appear to be mediated by several signaling pathways affected by vitamin D. This review aims to explore the effects of vitamin D on skeletal muscle in each model system and to delineate potential cell signaling pathways affected by vitamin D.  相似文献   

10.
Summary The effects of the antibiotics methotrexate and chloramphenicol on somatic embryogenesis inCitrus were evaluated. Relatively low levels (0.1 to 1.0 μg/ml) of these antibiotics did not inhibit embryo production from undeveloped ovules of ‘Key’ lime [C. aurantifolia) (Christm.) Swing.]. Surprisingly, both antibiotics induced the formation of embryogenic callus in these cultures. This is usually a rare event in cultures of undevelopedCitrus ovules, and ‘Key’ lime is especially recalcitrant. The effects of these antibiotics on embryogenic callus appeared to be limited to the induction stage, because there was no consistent effect, either stimulatory or inhibitory, on established, lines of embryogenic callus. Florida Agricultural Experiment Station Journal Series No. 8958. This research was supported in part by a grant to Moore and Cline from the Competitive Grants Office of the SEA, USDA (85-CRCR-1-1623).  相似文献   

11.
Purification of dystrophin from skeletal muscle   总被引:16,自引:0,他引:16  
Dystrophin was purified from rabbit skeletal muscle by alkaline dissociation of dystrophin-glycoprotein complex which was first prepared by derivatized lectin chromatography. Dystrophin-glycoprotein complex was isolated from digitonin-solubilized rabbit skeletal muscle membranes by a novel two-step method involving succinylated wheat germ agglutinin (sWGA) chromatography and DEAE-cellulose ion exchange chromatography. Proteins co-purifying with dystrophin were a protein triplet of Mr 59,000 and four glycoproteins of Mr 156,000, 50,000, 43,000, and 35,000, all previously identified as components of the dystrophin-glycoprotein complex. Alkaline treatment of sWGA/DEAE-purified dystrophin-glycoprotein complex resulted in complete dissociation of the dystrophin-glycoprotein complex. In order to separate dystrophin from its associated proteins, alkaline-dissociated dystrophin-glycoprotein complex was sedimented by sucrose gradient centrifugation. The residual glycoproteins which contaminated peak dystrophin-containing gradient fractions were then removed by WGA-Sepharose adsorption. The resulting protein appeared as a single band with an apparent Mr of 400,000 on overloaded Coomassie Blue-stained gels. The absence of WGA-peroxidase staining on nitrocellulose transfers of the pure protein indicated that the pure protein was devoid of contaminating glycoproteins. Antisera raised against the carboxyl terminus of human skeletal muscle dystrophin (which does not cross-react with the carboxyl terminus of the chromosome 6-encoded dystrophin-related protein) recognized the pure protein as did antisera specific for the amino terminus of human dystrophin. These data indicate that the protein isolated is indeed the intact, predominant skeletal muscle isoform product of the Duchenne muscular dystrophy gene.  相似文献   

12.
Alpha-ketoisocaproic acid (KIC) is the product of the transamination of the indispensable amino acid leucine, which is the first step in the complete degradation of leucine. To determine the effects of intense exercise on muscle and blood levels of KIC, 7 male volunteers performed cycle exercise to exhaustion. After pedaling at an intensity of 90 W for 3 min, the load was increased by 60 W every 3 min until volitional fatigue. Muscle biopsies were obtained prior to and immediately after exercise and rapidly frozen for later determination of KIC. During exercise, blood lactate levels increased as expected, while plasma KIC levels did not change. Following exercise, plasma KIC levels rose significantly with peak values occurring 15 min after exercise and did not return to pre-exercise values until 60 min after exercise. In contrast, muscle KIC levels increased during exercise from a pre-exercise mean of 49.4 +/- 4.1 mumol X kg-1 wet wt to 78.1 +/- 6.5 mumol X kg-1 after exercise, an average increase of 48% (P less than 0.05). These data indicate that during intense exercise, leucine transamination in muscle may continue at a faster rate than the decarboxylation of KIC. In addition, plasma levels of KIC did not reflect the intracellular accumulation of KIC during exercise, suggesting a delay in the diffusion of KIC from muscle.  相似文献   

13.
In both hot and cold environments, tissue oxygen saturation levels may affect muscle performance. Using near-infrared spectroscopy, muscle oxygen saturation (StO2) and total hemoglobin levels were measured during exercise. Lowering skin temperature caused a greater StO2 and total hemoglobin decrease by 16% and 15.9%, respectively, compared to controls. Increasing skin temperature resulted in a smaller decrease in both StO2 and total hemoglobin by 12.2% and 8.2%, respectively, compared to controls. These data indicate that warming the skin will cause less of decrease in StO2 and total hemoglobin, while cooling the skin has the opposite effect.  相似文献   

14.
Thiazolidinediones, represented by troglitazone, are insulin-sensitizing agents with proven efficacy for the treatment of type 2 diabetes. Exercise is also recommended for patients with type 2 diabetes because it both stimulates glucose uptake directly and it increases insulin sensitivity following exercise. The purpose of this study was to investigate the effects of troglitazone combined with exercise on 2-deoxyglucose (2DG) uptake in both the epitrochlearis and soleus muscle of Balb-c mice. Acute, 1-h treatment with troglitazone (10 or 20 microM), in the presence or absence of insulin, had no effect on 2DG uptake in either muscle. Chronic treatment with troglitazone by feeding enhanced the insulin sensitivity and responsiveness of 2DG uptake primarily in the epitrochlearis. Direct electrical stimulation of in situ muscle was used to model exercise while the contralateral muscle was used as the unexercised control. This model mimicked exercise in that glycogen was depleted, immediate 2DG uptake was enhanced, and there was a post-exercise increase in insulin sensitivity. Troglitazone feeding had no effect on 2DG uptake in the soleus when measured immediately after electrical stimultion. However, 2DG uptake in the unstimulated epitrochlearis from troglitazone-fed mice was elevated when measured immediately after removal such that no additional effects of the electrical stimulation were measured. We found that the insulin-sensitizing effect of troglitazone was not additive to the insulin-sensitizing effect of exercise, which suggests that troglitazone and exercise share similar pathways. A unique finding in this study was the differential response to troglitazone between the epitrochlearis (fast twitch) and the soleus (slow twitch) muscle types. Possible mechanisms are discussed.  相似文献   

15.

Background

In dystrophic mdx skeletal muscle, aberrant Ca2+ homeostasis and fibre degeneration are found. The absence of dystrophin in models of Duchenne muscular dystrophy (DMD) has been connected to altered ion channel properties e.g. impaired L-type Ca2+ currents. In regenerating mdx muscle, ‘revertant’ fibres restore dystrophin expression. Their functionality involving DHPR-Ca2+-channels is elusive.

Methods and Results

We developed a novel ‘in-situ’ confocal immuno-fluorescence and imaging technique that allows, for the first time, quantitative subcellular dystrophin-DHPR colocalization in individual, non-fixed, muscle fibres. Tubular DHPR signals alternated with second harmonic generation signals originating from myosin. Dystrophin-DHPR colocalization was substantial in wt fibres, but diminished in most mdx fibres. Mini-dystrophin (MinD) expressing fibres successfully restored colocalization. Interestingly, in some aged mdx fibres, colocalization was similar to wt fibres. Most mdx fibres showed very weak membrane dystrophin staining and were classified ‘mdx-like’. Some mdx fibres, however, had strong ‘wt-like’ dystrophin signals and were identified as ‘revertants’. Split mdx fibres were mostly ‘mdx-like’ and are not generally ‘revertants’. Correlations between membrane dystrophin and DHPR colocalization suggest a restored putative link in ‘revertants’. Using the two-micro-electrode-voltage clamp technique, Ca2+-current amplitudes (imax) showed very similar behaviours: reduced amplitudes in most aged mdx fibres (as seen exclusively in young mdx mice) and a few mdx fibres, most likely ‘revertants’, with amplitudes similar to wt or MinD fibres. Ca2+ current activation curves were similar in ‘wt-like’ and ‘mdx-like’ aged mdx fibres and are not the cause for the differences in current amplitudes. imax amplitudes were fully restored in MinD fibres.

Conclusions

We present evidence for a direct/indirect DHPR-dystrophin interaction present in wt, MinD and ‘revertant’ mdx fibres but absent in remaining mdx fibres. Our imaging technique reliably detects single isolated ‘revertant’ fibres that could be used for subsequent physiological experiments to study mechanisms and therapy concepts in DMD.  相似文献   

16.
Wells KE  Fletcher S  Mann CJ  Wilton SD  Wells DJ 《FEBS letters》2003,552(2-3):145-149
The use of antisense oligonucleotides (AOs) to induce exon skipping leading to generation of an in-frame dystrophin protein product could be of benefit in around 70% of Duchenne muscular dystrophy patients. We describe the use of hyaluronidase enhanced electrotransfer to deliver uncomplexed 2'-O-methyl modified phosphorothioate AO to adult dystrophic mouse muscle, resulting in dystrophin expression in 20-30% of fibres in tibialis anterior muscle after a single injection. Although expression was transient, many of the corrected fibres initially showed levels of dystrophin expression well above the 20% of endogenous previously shown to be necessary for phenotypic correction of the dystrophic phenotype.  相似文献   

17.
The effects of pathology on skeletal populations are indirect as well as direct. A review of the histories of four collections in the National Museum shows that the indirect effects come about largely because collectors sometimes select the skeletons to be saved. If selection is on the basis of state of preservation, it can be against pathological specimens since lesions sometimes weaken the bones and hasten their deterioration. If selection is on the basis of interest in pathology, it can exaggerate the representation of diseased specimens in the collections. As civilization advanced and man learned how better to cope with diseases, life expectancy increased and with it the evidence in the bones of the scars of living. The effects of pathology on skeletal populations are thus proportional to the mean ages of the latter. Aside from gross osseous lesions, the direct effects of pathology on skeletal populations are difficult to demonstrate. In so far as changes in size are concerned the effects thus far detected seem to be more proportional than linear. As regards pathological states with hereditary bases, they will affect populations to the extent that involved family lines are represented.  相似文献   

18.
Zhizhina  G. P. 《Biophysics》2011,56(4):738-746
Chronic effects of low doses of low-intensity ionizing radiation (IR) on biological objects have gained great social significance. This has given a considerable impetus to research into the biological effects and mechanisms of such exposures, both in Russia and abroad. In this paper, an overview of the physicochemical and molecular basis of IR influence at low doses is provided. Means of cell protection from radiation damage are studied and an analysis of the typical features and differences in the radiation effects at low and high doses is carried out. We considered DNA radiation damage, both in cell cultures and in vivo, as well as the processes and results of their repair. Particular attention is paid to changes in the basic paradigms of biological radiation effects at low doses.  相似文献   

19.
20.
The effect of chronic irradiation on T and B cell numbers and function was studied in mice. Cobalt 60 gamma radiation at 6 R/hour reduced the numbers of anti-SRBC PFC in the spleen, with minimal levels recorded after total exposures of 1000-2000 R. Recovery was incomplete after 1000 R, reaching only 40-50 per cent of normal in four months and remaining at that level for the animal's lifetime. The long-term deficiency in PFC formation was not due to a quantitative lack of T or B cells since normal cell numbers were observed in the spleen 60-144 days after 1000 R. Adoptive transfer studies with combinations of bone marrow and thymus cells, or of splenic T and B cells, from normal and irradiated mice, revealed functional defects in both cell compartments during the first two months. Normal and near normal function of T and B cells occurred 100 days postirradiation, a time when the splenic in vivo response was still only 50 per cent of the controls. The latter observation suggests that the microenvironment of the chronically irradiated spleen alters factors regulating T and B cell interactions in response to a T-dependent antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号