首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa.  相似文献   

2.
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.  相似文献   

3.
Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four β-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in β-trefoil domains 1 and 3. The site in β-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in β-trefoil-3 is related by pseudo-2-fold symmetry to that in β-trefoil-1. The two sites are ~5 nm apart, resulting in a distance between actin filaments in the bundle of ~8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.  相似文献   

4.
Cofilin is essential for cell viability and for actin-based motility. Cofilin severs actin filaments, which enhances the dynamics of filament assembly. We investigated the mechanism of filament severing by cofilin with direct fluorescence microscopy observation of single actin filaments in real time. In cells, actin filaments are likely to be attached at multiple points along their length, and we found that attaching filaments in such a manner greatly increased the efficiency of filament severing by cofilin. Cofilin severing increased and then decreased with increasing concentration of cofilin. Together, these results indicate that cofilin severs the actin filament by a mechanism of allosteric and cooperative destabilization. Severing is more efficient when relaxation of this cofilin-induced instability of the actin filament is inhibited by restricting the flexibility of the filament. These conclusions have particular relevance to cofilin function during actin-based motility in cells and in synthetic systems.  相似文献   

5.
Summary In our preliminary subcellular localization experiment we demonstrated that annexin II co-localized with submembranous actin in subpopulations of both cultured fibroblasts and keratinocytes. To investigate the physical interaction between annexin II and actin at the cell periphery, in vitro reconstitution experiments were carried out with keratins used as a control. Annexin II, isolated by immunoaffinity column chromatography, was found to exist as globular structures measuring 10 to 25 nm in diameter by rotary shadowing, similar to a previous report. We believe that these structures represent its polymeric forms. By negative staining, monomeric annexin II was detectable as tapered rods, measuring 6 nm in length and 1 to 2 nm in diameter. When annexin II was mixed with actin in 3 mM piperazine-N, N-bis-2-ethanesulfonic acid (PIPES) buffer with 10 mM NaCl2, 2 mM MgCl2 and 0.1 mM CaCl2, thick twisting actin bundles formed, confirming previous reports. This bundling was much reduced when calcium was removed. In the presence of 5 mM ethylenediamine tetra-acetic acid (EDTA) in 5 mM tris, pH 7.2, keratins were found to form a network of filaments, which began to disassemble when the chelator was removed and became fragmented when 0.1 mM CaCl2 was added. Keratins under the same conditions did not fragment when annexin II was present. These results suggest that annexin II, in conjunction with Ca2+, may be involved in a flexible system accommodating changes in the membrane cytoskeletal framework at the cell periphery in keratinocytes.  相似文献   

6.
Actin filament destruction by osmium tetroxide   总被引:48,自引:39,他引:9  
We have studied the destruction of purified muscle actin filaments by osmium tetroxide (OsO4) to develop methods to preserve actin filaments during preparation for electron microscopy. Actin filaments are fragmented during exposure to OsO4. This causes the viscosity of solutions of actin filaments to decrease, ultimately to zero, and provides a convenient quantitative assay to analyze the reaction. The rate of filament destruction is determined by the OsO4 concentration, temperature, buffer type and concentration, and pH. Filament destruction is minimized by treatment with a low concentration of OsO4 in sodium phosphate buffer, pH 6.0, at 0 degrees C. Under these conditions, the viscosity of actin filament solutions is stable and actin filaments retain their straight, unbranched structure, even after dehydration and embedding. Under more severe conditions, the straight actin filaments are converted into what look like the microfilament networks commonly observed in cells fixed with OsO4. Destruction of actin filaments can be inhibited by binding tropomyosin to the actin. Cross-linking the actin molecules within a filament with glutaraldehyde does not prevent their destruction by OsO4. The viscosity decrease requires the continued presence of free OsO4. During the time of the viscosity change, OsO4 is reduced and the sulfur-containing amino acids of actin are oxidized, but little of the osmium is bound to the actin. Over a much longer time span, the actin molecules are split into discrete peptides.  相似文献   

7.
Calcium-dependent regulation of actin filament bundling by lipocortin-85   总被引:3,自引:0,他引:3  
Lipocortin-85 (L-85, calpactin-I/lipocortin-II heterotetramer) binds to F-actin in the presence of calcium with high affinity and in a cooperative manner. Quantitative analysis of binding curves indicate an apparent Kd (L-85) of 0.226 microM +/- 0.153 (2 S.D., n = 3), a stoichiometry of L-85/actin of 1:1.9 and a Hill coefficient of 1.37 +/- 0.14 (2 S.D., n = 3). Large anisotropic bundles were visualized by electron microscopy under these conditions, and quantitation of bundling by both low speed sedimentation and light scattering yielded apparent Kd values between 0.12 and 0.27 microM L-85. Filament bundling was dependent upon calcium, and the calcium sensitivity was increased by raising the molar ratio of lipocortin-85/F-actin. At saturating levels of L-85, apparent K0.5 values of 0.1-2 microM Ca2+f were obtained. The monomeric heavy chain, lipocortin-II, bundled F-actin to a much lesser extent and at much higher concentrations than for lipocortin-85. Bundling of F-actin by lipocortin-I was not detected at molar ratios of lipocortin-I to actin as high as 2.5 mol/mol (lipocortin-I/actin). At 5-10 microM Ca2+f and saturating levels of L-85, F-actin bundling progressed very rapidly with a t0.5 of 6 s. The process was quickly reversed by the addition of excess EGTA, and bundles could be reformed by the addition of a second burst of 5-10 microM Ca2+f. Thus, our data suggest that lipocortin-85 can rapidly regulate F-actin bundling in a calcium-dependent manner at physiologically relevant calcium levels.  相似文献   

8.
Actin filament disassembly in blood plasma   总被引:10,自引:0,他引:10  
  相似文献   

9.
Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product).  相似文献   

10.
Calcium regulation of skeletal muscle thin filament motility in vitro.   总被引:6,自引:1,他引:5  
Using an in vitro motility assay, we have investigated Ca2+ regulation of individual, regulated thin filaments reconstituted from rabbit fast skeletal actin, troponin, and tropomyosin. Rhodamine-phalloidin labeling was used to visualize the filaments by epifluorescence, and assays were conducted at 30 degrees C and at ionic strengths near the physiological range. Regulated thin filaments exhibited well-regulated behavior when tropomyosin and troponin were added to the motility solutions because there was no directed motion in the absence of Ca2+. Unlike F-actin, the speed increased in a graded manner with increasing [Ca2+], whereas the number of regulated thin filaments moving was more steeply regulated. With increased ionic strength, Ca2+ sensitivity of both the number of filaments moving and their speed was shifted toward higher [Ca2+] and was steepest at the highest ionic strength studied (0.14 M gamma/2). Methylcellulose concentration (0.4% versus 0.7%) had no effect on the Ca2+ dependence of speed or number of filaments moving. These conclusions hold for five different methods used to analyze the data, indicating that the conclusions are robust. The force-pCa relationship (pCa = -log10[Ca2+]) for rabbit psoas skinned fibers taken under similar conditions of temperature and solution composition (0.14 M gamma/2) paralleled the speed-pCa relationship for the regulated filaments in the in vitro motility assay. Comparison of motility results with the force-pCa relationship in fibers suggests that relatively few cross-bridges are needed to make filaments move, but many have to be cycling to make the regulated filament move at maximum speed.  相似文献   

11.
Formation of actin stress fibers and the focal adhesion complex between cell and the substratum are crucial for nonmalignant cells to achieve anchorage-dependent growth. We show here that the adhesion complex formed in normal human mammary epithelial (HME) cells which adhered to type IV collagen, involved the EGF receptor (EGFR) and phospholipase Cgamma (PLCgamma) as signaling molecules, in addition to integrin beta1, alpha-actinin, and actin even before stimulation of the cells with EGF. Stimulation of cells with EGF induced tyrosine phosphorylation of EGFR and activation of PLCgamma, as assessed by the production of a second messenger diacylglycerol (DAG), without any significant increase in the amount of EGFR-bound PLCgamma. Disruption of either actin filaments by cytochalasin D (CD) or actin-myosin contractility by ML-7, an inhibitor of myosin light chain kinase (MLCK), altered the flattened morphology of quiescent cells to a retracted one, without affecting the association between EGFR and PLCgamma. Stimulation of CD- or ML-7-treated cells with EGF failed to inhibit tyrosine phosphorylation of EGFR and its association and colocalization with PLCgamma, but inhibited the PLCgamma activation. Phosphatidylinositol 4,5-bisphosphate (PtdInsP2), substrate of PLCgamma, was tightly associated with alpha-actinin and the content of alpha-actinin-bound PtdInsP2 was reduced by treatment of cells with ML-7 but not with CD. The amount of PtdInsP2 bound to alpha-actinin was increased by the addition of EGF and this EGF-induced increase was blocked by either CD or ML-7. The present results suggest that anchorage-dependent EGF signaling in HME cells may require both actin filament assembly and actin-myosin contractility for the PLCgamma activation.  相似文献   

12.
Summary. We studied the distribution of the endogenous Arp2/3 complex in Amoeba proteus and visualised the ratio of filamentous (F-actin) to total actin in living cells. The presented results show that in the highly motile Amoeba proteus, Arp2/3 complex-dependent actin polymerisation is involved in the formation of the branching network of the contractile layer, adhesive structures, and perinuclear cytoskeleton. The aggregation of the Arp2/3 complex in the cortical network, with the exception of the uroid and advancing fronts, and the spatial orientation of microfilaments at the leading edge suggest that actin polymerisation in this area is not sufficient to provide the driving force for membrane displacement. The examined proteins were enriched in the pinocytotic pseudopodia and the perinuclear cytoskeleton in pinocytotic amoebae. In migrating amoebae, the course of changes in F-actin concentration corresponded with the distribution of tension in the cell cortex. The maximum level of F-actin in migrating amoebae was observed in the middle-posterior region and in the front of retracting pseudopodia. Arp2/3 complex-dependent actin polymerisation did not seem to influence F-actin concentration. The strongly condensed state of the microfilament system could be attributed to strong isometric contraction of the cortical layer accompanied by its retraction from distal cell regions. Isotonic contraction was limited to the uroid. Correspondence and reprints: Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, ulica Pasteura 3, 02-093 Warszawa, Poland.  相似文献   

13.
We observed a three-dimensional up-and-down movement of an actin filament sliding on heavy mero-myosin (HMM) molecules in an in vitro motility assay. The up-and-down movement occurred along the direction perpendicular to the planar glass plane on which the filament demonstrated a sliding movement. The height length of the up-and-down movement was measured by monitoring the extent of diminishing fluorescent emission from the marker attached to the filament in the evanescent field of attenuation. The height lengths whose distribution exhibits a local maximum were found around the two values, 150 nm and 90 nm, separately. This undulating three-dimensional movement of an actin filament suggests that the interactions between myosin (HMM) molecules and the actin filament may temporally be modulated during its sliding movement.  相似文献   

14.
The ability of calcium to regulate thin filament sliding velocity was studied in an in vitro motility assay system using cardiac troponin and tropomyosin and rhodamine-phalloidin-labeled skeletal actin and skeletal heavy meromyosin to propel the filaments. Measurements showed that both the number of thin filaments sliding and their sliding speed (Sf) were dependent on the calcium concentration in the range of pCa 5 to 9. Thin filament motility was completely inhibited only if troponin and tropomyosin were added at a concentration of 100 nM to the motility assay solution and the pCa was more than 8. The filament sliding speed was dependent on the pCa in a noncooperative fashion (Hill coefficient = 1) and reached maximum at 5 microns/s at a pCa of 5. The number of filaments moving uniformly decreased from > 90% at pCa 5-6 to near zero in less than 1 pCa unit. This behavior may be explained by a hypothesis in which the regulatory proteins control the number of cross-bridge heads interacting with the thin filaments rather than the rate at which they individually hydrolyze ATP or translocate the thin filaments.  相似文献   

15.
Actin filament nucleation by endosomes, lysosomes and secretory vesicles   总被引:13,自引:0,他引:13  
Intracellular pathogens such as Listeria monocytogenes and vaccinia virus propel themselves through the cytoplasm of mammalian cells by nucleating actin filaments. Recently, actin assembly has also been shown to power the movement of intracellular vesicles, and this may be a mechanism underlying endomembrane movement in a variety of physiological contexts. Surprisingly, class I myosins have been found to play important roles in both actin nucleation and endomembrane trafficking.  相似文献   

16.
Localizing specific components in three-dimensional reconstructions of protein complexes visualized in an electron microscope increases the scientific value of those structures. Subunits are often identified within the complex by labeling; however, unless the label produces directly visible features, it must be detected by computational comparison with unlabeled complex. To bypass this step, we generated a cloneable tag from the actin-nucleating protein Spire that produces a directly visible “pointer” to the subunit after actin polymerization. We have used this new label to identify the intron of the C complex spliceosome to its small domain by fusing the 10 kDa Spire moiety to the affinity label that binds recombinant stem loops in the pre-mRNA substrate and assembling an actin filament on the particle.  相似文献   

17.
《The Journal of cell biology》1990,111(6):2979-2988
Shortly after Listeria is phagocytosed by a macrophage, it dissolves the phagosomal membrane and enters the cytoplasm. 1 h later, actin filaments coat the Listeria and then become rearranged to form a tail with which the Listeria moves to the macrophage surface as a prelude to spreading. If infected macrophages are treated with cytochalasin D, all the actin filaments associated with the Listeria break down leaving a fine, fibrillar material that does not decorate with subfragment 1 of myosin. This material is associated with either the surface of the Listeria (the cloud stage) or one end (the tail stage). If the cytochalasin-treated infected macrophages are detergent extracted and then incubated in nuclei-free monomeric actin under polymerizing conditions, actin filaments assemble from the fine, fibrillar material, the result being that each Listeria has actin filaments radiating from its surface like the spokes of a wheel (cloud form) or possesses a long tail of actin filaments formed from the fine, fibrillar material located at one end of the Listeria. Evidence that the fine fibrillar material is involved in nucleating actin assembly comes from a Listeria mutant. Although the mutant replicates at a normal rate in macrophages, actin filaments do not form on its surface (cloud stage) or from one end (tail stage), nor does the bacterium spread. Furthermore it does not form the fine fibrillar material. Evidence that the nucleating material is a secretory product of Listeria and not the macrophage comes from experiments using chloramphenicol, which inhibits protein synthesis in Listeria but not in macrophages. If chloramphenicol is applied 1 h after infection, a time before actin filaments are found attached to the Listeria in untreated macrophages, actin filaments never assemble on the Listeria even when fixed 3 h later. Furthermore the fine fibrillar material is absent, although there is a coat of dense granular material.  相似文献   

18.
Cerebellar granule neurons developing in vitro initially extend a single axon, with the Golgi apparatus and centrosome positioned at the base of this axon and then begin the transition to a bipolar morphology by rotating the Golgi-centrosome to the opposite pole of the cell and extending a secondary axon; granule cells reach a mature, complex morphology by extending multiple, short dendrites by 5-6 days in vitro. (Zmuda and Rivas, 1998. Cell Motil Cytoskel 41:18-38). To test the effects of actin depolymerization on this characteristic pattern of granule cell axonogenesis, cultured granule cells were treated with either cytochalasin D (CD) or latrunculin A (Lat A) to depolymerize filamentous actin. Although actin depolymerization did not inhibit initial axon extension, it prevented the cells from proceeding on to the transitional, bipolar, or complex stages of differentiation, effectively blocking the cells at the unipolar stage of differentiation. Although the Golgi apparatus resided at the base of the axon in nontreated unipolar cells, or at the opposite pole of the cell body in nontreated transitional cells, the Golgi was randomly localized within the cytoplasm of cells that had been treated with either CD or Lat A. These results show that the transition from the unipolar to the bipolar stage and on to more mature stages of granule cell differentiation is dependent on an intact actin cytoskeleton and suggest that the characteristic pattern of granule cell differentiation may be dependent on the repositioning of the Golgi-centrosome during morphological development.  相似文献   

19.
Actin filament content and organization in unstimulated platelets   总被引:13,自引:9,他引:4       下载免费PDF全文
The extent of actin polymerization in unstimulated, discoid platelets was measured by DNase I inhibition assay in Triton X-100 lysates of platelets washed at 37 degrees C by gel filtration, or in Triton X-100 lysates of platelets washed at ambient temperatures by centrifugation in the presence of prostacyclin. About 40% of the actin in the discoid platelets obtained by either method existed as filaments. These filaments could be visualized by electron microscopy of thin sections. Similar results were obtained when the actin filament content of discoid platelets was measured by sedimentation of filaments from Triton X-100 lysates at high g forces (145,000 g for 45 min). However, few of these filaments sedimented at the lower g forces often used to isolate networks of actin filaments from cell extracts. These results indicate that actin filaments in discoid cells are not highly crosslinked. Platelets isolated by centrifugation in the absence of prostacyclin were not discoid, but were instead irregular with one or more pseudopodia. These platelets also contained approximately 40-50% of their actin in a filamentous form; many of these filaments sedimented at low g forces, however, indicating that they were organized into networks. The discoid shape of these centrifuged platelets could be restored by incubating them for 1-3 h at 37 degrees C, which resulted in the reversal of filament organization. High g forces were then required for the sedimentation of the actin. Approximately 80-90% of the actin in platelets washed at 4 degrees C was filamentous; this high actin filament content could be attributed to actin polymerization during the preparation of the platelets at low temperatures. These studies show that platelet activation involves mechanisms for the structural reorganization of existing filaments, in addition to those previously described for mediating actin polymerization.  相似文献   

20.
Actin filament organization in the fish keratocyte lamellipodium   总被引:17,自引:7,他引:10       下载免费PDF全文
《The Journal of cell biology》1995,129(5):1275-1286
From recent studies of locomoting fish keratocytes it was proposed that the dynamic turnover of actin filaments takes place by a nucleation- release mechanism, which predicts the existence of short (less than 0.5 microns) filaments throughout the lamellipodium (Theriot, J. A., and T. J. Mitchison. 1991. Nature (Lond.). 352:126-131). We have tested this model by investigating the structure of whole mount keratocyte cytoskeletons in the electron microscope and phalloidin-labeled cells, after various fixations, in the light microscope. Micrographs of negatively stained keratocyte cytoskeletons produced by Triton extraction showed that the actin filaments of the lamellipodium are organized to a first approximation in a two-dimensional orthogonal network with the filaments subtending an angle of around 45 degrees to the cell front. Actin filament fringes grown onto the front edge of keratocyte cytoskeletons by the addition of exogenous actin showed a uniform polarity when decorated with myosin subfragment-1, consistent with the fast growing ends of the actin filaments abutting the anterior edge. A steady drop in filament density was observed from the mid- region of the lamellipodium to the perinuclear zone and in images of the more posterior regions of lower filament density many of the actin filaments could be seen to be at least several microns in length. Quantitative analysis of the intensity distribution of fluorescent phalloidin staining across the lamellipodium revealed that the gradient of filament density as well as the absolute content of F-actin was dependent on the fixation method. In cells first fixed and then extracted with Triton, a steep gradient of phalloidin staining was observed from the front to the rear of the lamellipodium. With the protocol required to obtain the electron microscope images, namely Triton extraction followed by fixation, phalloidin staining was, significantly and preferentially reduced in the anterior part of the lamellipodium. This resulted in a lower gradient of filament density, consistent with that seen in the electron microscope, and indicated a loss of around 45% of the filamentous actin during Triton extraction. We conclude, first that the filament organization and length distribution does not support a nucleation release model, but is more consistent with a treadmilling-type mechanism of locomotion featuring actin filaments of graded length. Second, we suggest that two layers of filaments make up the lamellipodium; a lower, stabilized layer associated with the ventral membrane and an upper layer associated with the dorsal membrane that is composed of filaments of a shorter range of lengths than the lower layer and which is mainly lost in Triton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号