首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The Salvador-Warts-Hippo (SWH) pathway is a complex signaling network that controls both developmental and regenerative tissue growth. Using a genetic screen in Drosophila melanogaster, we identified the sterile 20-like kinase, Tao-1, as an SWH pathway member. Tao-1 controls various biological phenomena, including microtubule dynamics, animal behavior, and brain development. Here we describe a role for Tao-1 as a regulator of epithelial tissue growth that modulates activity of the core SWH pathway kinase cassette. Tao-1 functions together with Hippo to activate Warts-mediated repression of Yorkie. Tao-1's ability to control SWH pathway activity is evolutionarily conserved because human TAO1 can suppress activity of the Yorkie ortholog, YAP. Human TAO1 controls SWH pathway activity by phosphorylating, and activating, the Hippo ortholog, MST2. Given that SWH pathway activity is subverted in many human cancers, our findings identify human TAO kinases as potential tumor suppressor genes.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
WW domain binding protein-2 (WBP-2) was cloned as an E6-associated protein interacting protein, and its role in steroid hormone receptors functions was investigated. We show that WBP-2 specifically enhanced the transactivation functions of progesterone receptor (PR) and estrogen receptor (ER), whereas it did not have any significant effect on the androgen receptor, glucocorticoid receptor, or the activation functions of p53 and VP-16. Depletion of endogenous WBP-2 with small interfering RNAs indicated that WBP-2 was required for the proper functioning of PR and ER. We also demonstrated that WBP-2 contains an intrinsic activation domain. Moreover, chromatin immunoprecipitation assays demonstrate the hormone-dependent recruitment of WBP-2 onto an estrogen-responsive promoter. Mutational analysis suggests that one of three polyproline (PY) motifs of WBP-2 is essential for its coactivation and intrinsic activation functions. We show that WBP-2 and E6-associated protein each enhance PR function, and their effect on PR action are additive when coexpressed, suggesting a common signaling pathway. In this study, we also demonstrate that the WBP-2 binding protein, Yes kinase-associated protein (YAP) enhances PR transactivation, but YAP's coactivation function is absolutely dependent on WBP-2. Taken together, our data establish the role of WBP-2 and YAP as coactivators for ER and PR transactivation pathways.  相似文献   

16.
17.
The paralogous multifunctional adaptor proteins YAP and TAZ are the nuclear effectors of the Hippo pathway, a central mechanism of organ size control and stem cell self-renewal. WW domains, mediators of protein-protein interactions, are essential for YAP and TAZ function, enabling interactions with PPxY motifs of numerous partner proteins. YAP has single and double WW domain isoforms (YAP1 and YAP2) whereas only a single WW domain isoform of TAZ has been described to date. Here we identify the first example of a double WW domain isoform of TAZ. Using NMR, we have characterized conformational features and peptide binding of YAP and TAZ tandem WW domains (WW1-WW2). The solution structure of YAP WW2 confirms that it has a canonical three-stranded antiparallel β-sheet WW domain fold. While chemical shift-based analysis indicates that the WW domains in the tandem WW pairs retain the characteristic WW domain fold, 15N relaxation data show that, within the respective WW pairs, YAP WW1 and both WW1 and WW2 of TAZ undergo conformational exchange. 15N relaxation data also indicate that the linker between the WW domains is flexible in both YAP and TAZ. Within both YAP and TAZ tandem WW pairs, WW1 and WW2 bind single PPxY-containing peptide ligand concurrently and noncooperatively with sub-mM affinity. YAP and TAZ WW1-WW2 bind a dual PPxY-containing peptide with approximately 6-fold higher affinity. Our results indicate that both WW domains in YAP and TAZ are functional and capable of enhanced affinity binding to multi-PPxY partner proteins such as LATS1, ErbB4, and AMOT.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号