首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurogenesis persists in the adult dentate gyrus of rodents throughout the life of the organism. The factors regulating proliferation, survival, migration, and differentiation of neuronal progenitors are now being elucidated. Cells from the adult hippocampus can be propagated, cloned in vitro, and induced to differentiate into neurons and glial cells. Cells cultured from the adult rodent hippocampus can be genetically marked and transplanted back to the adult brain, where they survive and differentiate into mature neurons and glial cells. Although multipotent stem cells exist in the adult rodent dentate gyrus, their biological significance remains elusive. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 249–266, 1998.  相似文献   

2.
Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration. Here, we developed viral-based methods for the in vivo detection and manipulation of the activity-dependent microRNA, miR-132, in the mouse hippocampus. We find, using lentiviral and retroviral reporters of miR-132 activity, that miR-132 is expressed at the right place and right time to influence the integration of newborn neurons. Retroviral knockdown of miR-132 using a specific 'sponge' containing multiple target sequences impaired the integration of newborn neurons into the excitatory synaptic circuitry of the adult brain. To assess potential miR-132 targets, we used a whole-genome microarray in PC12 cells, which have been used as a model of neuronal differentiation. miR-132 knockdown in PC12 cells resulted in the increased expression of hundreds of genes. Functional grouping indicated that genes involved in inflammatory/immune signaling were the most enriched class of genes induced by miR-132 knockdown. The correlation of miR-132 knockdown to increased proinflammatory molecular expression may indicate a mechanistic link whereby miR-132 functions as an endogenous mediator of activity-dependent integration in vivo.  相似文献   

3.
We investigated the function of cyclin-dependent kinase 2 (Cdk2) in neural progenitor cells during postnatal development. Chondroitin sulfate proteoglycan (NG2)–expressing progenitor cells of the subventricular zone (SVZ) show no significant difference in density and proliferation between Cdk2−/− and wild-type mice at perinatal ages and are reduced only in adult Cdk2−/− mice. Adult Cdk2−/− SVZ cells in culture display decreased self-renewal capacity and enhanced differentiation. Compensatory mechanisms in perinatal Cdk2−/− SVZ cells, which persist until postnatal day 15, involve increased Cdk4 expression that results in retinoblastoma protein inactivation. A subsequent decline in Cdk4 activity to wild-type levels in postnatal day 28 Cdk2−/− cells coincides with lower NG2+ proliferation and self-renewal capacity similar to adult levels. Cdk4 silencing in perinatal Cdk2−/− SVZ cells abolishes Cdk4 up-regulation and reduces cell proliferation and self- renewal to adult levels. Conversely, Cdk4 overexpression in adult SVZ cells restores proliferative capacity to wild-type levels. Thus, although Cdk2 is functionally redundant in perinatal SVZ, it is important for adult progenitor cell proliferation and self-renewal through age-dependent regulation of Cdk4.  相似文献   

4.
The present study is devoted to three-dimensional ultrastructural organization of mitotically dividing immature neurons in dentate gyrus using biophysical approaches. In adult vertebrate brain, cell proliferation persists throughout life mainly in dentate gyrus of the hippocampus (DG) and olfactory bulb. Neurogenesis has been demonstrated using tagged thymidine analogues incorporated into the S phase of the cell cycle, but these may also detect repaired DNA in postmitotic neurons. Recent retroviral labelling has shown that neuronal progenitors/neuroblasts divide and produce functional neurons. Providing ultrastructural evidence of mitotically active cells has proven problematical, not only because of technical issues of identifying dividing cells at electron microscope level, but also because it is difficult to demonstrate unequivocally that neurons identified in the electron microscope are really post mitotic. However by characterising post mitotic cells labelled with BrdU and doublecortin and comparing these with post mitotic cells reconstructed in 3-dimensions from ultrathin serial sections, we have been able to illustrate individual mitotic elements and phases of cells within the GC layer of adult rat dentate gyrus. Here we show dividing cells in metaphase within clusters of immature GCs in subgranular zone (SGZ). These reconstructions provide ultrastructural confirmation that cells expressing doublecortin (DCX), a microtubule-associated protein expressed in migrating neurons, localize as clusters in the subgranular zone (SGZ) of dentate gyrus (DG) in the hippocampus during all animal life. Such DG cells with clear synaptic specializations, somatic spines and basal dendrites are exclusive to immature GC that appear to re-enter the cell cycle, suggesting the possibility that newly generated neurons within the DG might arise not only from precursors, but also from clusters of immature GC.  相似文献   

5.
6.
7.
Neural progenitor cells that express the NG2 proteoglycan are present in different regions of the adult mammalian brain where they display distinct morphologies and proliferative rates. In the developing postnatal and adult mouse, NG2(+) cells represent a major cell population of the subventricular zone (SVZ). NG2(+) cells divide in the anterior and lateral region of the SVZ, and are stimulated to proliferate and migrate out of the SVZ by focal demyelination of the corpus callosum (CC). Many NG2(+) cells are labeled by GFP-retrovirus injection into the adult SVZ, demonstrating that NG2(+) cells actively proliferate under physiological conditions and after demyelination. Under normal physiological conditions and after focal demyelination, proliferation of NG2(+) cells is significantly attenuated in wa2 mice, which are characterized by reduced signaling of the epidermal growth factor receptor (EGFR). This results in reduced SVZ-to-lesion migration of NG2(+) cells and oligodendrogenesis in the lesion. Expression of vascular endothelial growth factor (VEGF) and EGFR ligands, such as heparin binding-EGF and transforming growth factor alpha, is upregulated in the SVZ after focal demyelination of the CC. EGF-induced oligodendrogenesis and myelin protein expression in wild-type SVZ cells in culture are significantly attenuated in wa2 SVZ cells. Our results demonstrate that the response of NG2(+) cells in the SVZ and their subsequent differentiation in CC after focal demyelination depend on EGFR signaling.  相似文献   

8.
During the development of the central nervous system, progenitor cells, located within distinct germinal zones, produce presumptive neurons that migrate to their destinations and differentiate. Recent studies have demonstrated that a discrete region of the anterior part of the postnatal subventricular zone (SVZa) comprises neuronal progenitor cells whose progeny are fated to become the interneurons of the olfactory bulb. The SVZa is of particular interest because it is one of few germinal zones to persist postnatally and may be the only postnatal germinal zone to give rise exclusively to neurons. To the extent that the SVZa is unique among proliferative zones, the SVZa progeny are unique among neurons. First, unlike most cortical neurons, the SVZa-derived cells do not rely on radial glia-assisted migration when traveling to their target region. Second, the SVZa progeny continue to proliferate as they migrate to their target region. And third, the SVZa progeny express early neuron-specific antigens prior to their final division and, therefore, prior to reaching their destination where they will terminally differentiate. To better understand the capacity of the SVZa progeny to concurrently proliferate, migrate, and differentiate, we studied the cells in vitro and following transplantation into the neonatal SVZa and adult striatum. In each setting, we found that the SVZa cells continue both to proliferate and to differentiate into neurons. In addition, after homotopic and heterotopic transplantation, we found that the SVZa cells maintain their ability to migrate. These results suggest that the unique features of the SVZa progeny are specified intrinsically rather than by their extrinsic environment.  相似文献   

9.
For the last 10 years our laboratory has been studying the proliferation, migration and differentiation of neuronal progenitor cells located in the anterior part of the postnatal forebrain subventricular zone (SVZa). SVZa-derived cells possess a number of proliferative characteristics that distinguish them from the other progenitor cells in the central nervous system. This review summarizes our recent findings, in which we compared the pattern of cell cycle inhibitory proteins expressed by the neonatal SVZa to that of telencephalic ventricular zone cells.  相似文献   

10.
11.

Background

New neurons are continuously being generated in the adult hippocampus, a phenomenon that is regulated by external stimuli, such as learning, memory, exercise, environment or stress. However, the molecular mechanisms underlying neuron production and how they are integrated into existing circuits under such physiological conditions remain unclear. Indeed, the intracellular modulators that transduce the extracellular signals are not yet fully understood.

Results

We show that Smad3, an intracellular molecule involved in the transforming growth factor (TGF)-β signaling cascade, is strongly expressed by granule cells in the dentate gyrus (DG) of adult mice, although the loss of Smad3 in null mutant mice does not affect their survival. Smad3 is also expressed by adult progenitor cells in the subgranular zone (SGZ) and more specifically, it is first expressed by Type 2 cells (intermediate progenitor cells). Its expression persists through the distinct cell stages towards that of the mature neuron. Interestingly, proliferative intermediate progenitor cells die in Smad3 deficiency, which is associated with a large decrease in the production of newborn neurons in Smad3 deficient mice. Smad3 signaling appears to influence adult neurogenesis fulfilling distinct roles in the rostral and mid-caudal regions of the DG. In rostral areas, Smad3 deficiency increases proliferation and promotes the cell cycle exit of undifferentiated progenitor cells. By contrast, Smad3 deficiency impairs the survival of newborn neurons in the mid-caudal region of the DG at early proliferative stages, activating apoptosis of intermediate progenitor cells. Furthermore, long-term potentiation (LTP) after high frequency stimulation (HFS) to the medial perforant path (MPP) was abolished in the DG of Smad3-deficient mice.

Conclusions

These data show that endogenous Smad3 signaling is central to neurogenesis and LTP induction in the adult DG, these being two forms of hippocampal brain plasticity related to learning and memory that decline with aging and as a result of neurological disorders.
  相似文献   

12.

Background

Mutations in LRRK2 encoding leucine-rich repeat kinase 2 are thus far the most frequent genetic cause associated with autosomal dominant and idiopathic Parkinson's disease (PD). To examine whether LRRK2 is directly associated with neuropathology of PD and other related disorders, we analyzed LRRK2 in brains of patients affected by PD and dementia with Lewy bodies (DLB) using highly specific antibodies to LRRK2.

Results

We demonstrated that anti-LRRK2 antibodies strongly labelled brainstem and cortical Lewy bodies, the pathological hallmarks of PD and DLB, respectively. In addition, anti-LRRK2 also labelled brain vasculature, axons, and neuronal cell bodies. Interestingly, the immunocytochemical profile of LRRK2 varied with different antibodies depending upon specific antigenic sites along the LRRK2 protein. All anti-LRRK2 antibodies tested that were raised against various regions of LRRK2, were found to be immunoreactive to recombinant LRRK2 on Western blots. However, only the antibodies raised against the N-terminal and C-terminal regions of LRRK2, but not the regions containing folded protein domains, were positive in immunolabeling of Lewy bodies, suggesting a differential exposure of specific antigenic sites of LRRK2 on tissue sections.

Conclusion

We conclude that LRRK2 is a component of Lewy bodies in both PD and DLB, and therefore plays an important role in the Lewy body formation and disease pathogenesis. Information on the cellular localization of LRRK2 under normal and pathological conditions will deepen our understanding of its functions and molecular pathways relevant to the progression of PD and related disorders.  相似文献   

13.
14.
Because the neural differentiation capacity of bone marrow stromal cells (BMSCs) is still a matter of controversial debate, we performed a thorough investigation into the differentiation capacity of human BMSCs and examined their therapeutic potency. BMSCs were isolated from the femur and kept in cell cultures with various cultivation protocols being applied. In standard culture conditions using a fetal calf serum-enriched medium, while not exhibiting a neural phenotype, the majority of cells expressed a variety of neuronal marker proteins as well as the astrocyte marker GFAP. Only a minority of stem cells expressed nestin, a marker for neural precursor cells. Cultivation in serum-free medium supplemented with specific growth factors resulted in a markedly higher percentage of nestin-positive cells. To establish the therapeutic potency of bone marrow-derived cells, the synthesis of neurotrophic factors such as NGF, BDNF and GDNF was analyzed under non-stimulating standard culture conditions as well as after a neural selection procedure. The therapeutic potency of BMSCs was further examined with regard to their migratory potential in vitro and after transplantation in vivo. After stereotactic engraftment into the lateral ventricle of adult rats, mesenchymal stem cells were seen to adhere to the ependymocytes and cells of the choroids plexus. Afterwards grafted cells passed through the ependymal barrier, locating in the subventricular space. Their BMSCs took up a close host graft interaction without any degenerative influence on the host cells. Furthermore, there was morphological as well as immunohistochemical evidence for a transdifferentiation within the host tissue. In addition, BMSCs could be efficiently transduced using a third-generation adenoviral vector, indicating their potential feasibility for a gene-therapeutic option.  相似文献   

15.
The possibility to take advantage from the nerve growth factor (NGF) ability to induce recovery of damaged tissue has been largely explored in animal models and humans. Recently, the successful use of the ocular administration of NGF in ophthalmology, and the evidences that from the eyes NGF can access to the brain have stimulated new fields of research and open further perspectives to the clinical application of this neurotrophin. In our previous studies we have demonstrated the efficacy of NGF eye drop treatment to improved behavioural deficits and recover structural and biochemical alterations occurring follow brain lesion in animals. Since NGF exerts neuroreparative effects in brain by acting on mature neurons and neuronal precursors localised in germinal subventricular zone (SVZ), the present study has been aimed to evaluate the effects of NGF eye drop administration on the expression of the mitotic marker Ki67 in brain of adult rats. We found that a single ocular administration (10 μl) of 200 μg/mL NGF solution is sufficient to enhance the distribution of Ki67 positive cells also expressing p75 neurotrophin receptors in the proliferating layer of the SVZ. In addition, NGF treatment induces an increase of levels of brain derived neurotrophic factor (BDNF) in forebrain. This data further supports the efficacy of ocular applied NGF to affect brain activities and suggests that NGF also by inducing local factors, including BDNF, can activate the machinery regulating the proliferation and maturation of neuronal precursor in brain.  相似文献   

16.
Focal cerebral ischemia induces neurogenesis in the subventricular zone (SVZ) of the adult human brain. Neurogenesis is controlled by proliferation, differentiation, and migration of neural progenitor cells. This article reviews emerging data that changes of cell cycle kinetics of neural progenitor cells induced by stroke contribute to increased neural progenitor cell proliferation and that gene profiles control proliferation, differentiation, and migration of neural progenitor cells within the SVZ niche. A better understanding of gene profiles that control the biological function of adult SVZ neural progenitor cells could lead to more selective and effective treatments to enhance neurogenesis during stroke recovery.  相似文献   

17.
In the present study, we investigated the temporal and spatial alterations of ceruloplasmin immunoreactivity in the gerbil hippocampus and dentate gyrus after 5 min transient forebrain ischemia. In sham-operated animals, ceruloplasmin immunoreactivity in the hippocampal CA2/3 areas was higher than that of other areas. Ceruloplasmin immunoreactivity and its protein content significantly increased and were highest in the CA1 area 1 day after ischemia-reperfusion. At this time point, the immunoreactivity was shown in pyramidal cells of the CA1 area. Four days after ischemia-reperfusion, ceruloplasmin immunoreactivity was shown in astrocytes in the hippocamapal CA1 area. These results suggest that reactive oxygen species (ROS) do not immediately damage neuronal cytosol, unlike DNA. An interval of time is required for the full expression of the cytoplasmic protein injury by ROS. This delayed neuronal injury 1 day after ischemic insult might provide a window of opportunity for therapeutic interventions using antioxidants.  相似文献   

18.
《Current biology : CB》2022,32(5):1088-1101.e5
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

19.
For more than a decade, we have known that the human brain harbors progenitor cells capable of becoming mature neurons in the adult human brain. Since the original landmark article by Eriksson et al. in 1998 (Nat Med 4:1313-1317), there have been many studies investigating the effect that depression, epilepsy, Alzheimer's disease, Huntington's disease, and Parkinson's disease have on the germinal zones in the adult human brain. Of particular interest is the demonstration that there are far fewer progenitor cells in the hippocampal subgranular zone (SGZ) compared with the subventricular zone (SVZ) in the human brain. Furthermore, the quantity of progenitor cell proliferation in human neurodegenerative diseases differs from that of animal models of neurodegenerative diseases; there is minimal progenitor proliferation in the SGZ and extensive proliferation in the SVZ in the human. In this review, we will present the data from a range of human and rodent studies from which we can compare the amount of proliferation of cells in the SVZ and SGZ in different neurodegenerative diseases.  相似文献   

20.
Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号