首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out genome-wide association (GWA) studies in inbred mouse strains characterized for their lung tumor susceptibility phenotypes (spontaneous or urethane-induced) with panels of 12,959 (13K) or 138,793 (140K) single-nucleotide polymorphisms (SNPs). Above the statistical thresholds, we detected only SNP rs3681853 on Chromosome 5, two SNPs in the pulmonary adenoma susceptibility 1 (Pas1) locus, and SNP rs4174648 on Chromosome 16 for spontaneous tumor incidence, urethane-induced tumor incidence, and urethane-induced tumor multiplicity, respectively, with the 13K SNP panel, but only the Pas1 locus with the 140K SNP panel. Haplotype analysis carried out in the latter panel detected four additional loci. Loci reported in previous GWA studies failed to replicate. Genome-wide genetic linkage analysis in urethane-treated (BALB/c×C3H/He)F2, (BALB/c×SWR/J)F2, and (A/J×C3H/He)F2 mice showed that Pas1, but none of the other loci detected previously or herein by GWA, had a significant effect. The Lasc1 gene, identified by GWA as a functional element (Nat. Genet., 38:888–95, 2006), showed no genetic effects in the two independent intercross mouse populations containing both alleles, nor was it expressed in mouse normal lung or lung tumors. Our results indicate that GWA studies in mouse inbred strains can suffer a high rate of false-positive results and that such an approach should be used in conjunction with classical linkage mapping in genetic crosses.  相似文献   

2.
p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein–DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.  相似文献   

3.
Lin W  Yang HH  Lee MP 《Genomics》2005,86(5):518-527
Differential expression between the two alleles of an individual and between people with different genotypes has been commonly observed. Quantitative differences in gene expression between people may provide the genetic basis for the phenotypic difference between individuals and may be the primary cause of complex diseases. In this paper, we developed a computational method to identify genes that displayed allelic variation in gene expression in human EST libraries. To model allele-specific gene expression, we first identified EST libraries in which both A and B alleles were expressed and then identified allelic variation in gene expression based on the EST counts for each allele using a binomial test. Among 1107 SNPs that had a sufficient number of ESTs for the analysis, 524 (47%) displayed allelic variation in at least one cDNA library. We verified experimentally the allelic variation in gene expression for 6 of these SNPs. The frequency of allelic variation observed in EST libraries was similar to the previous studies using the SNP chip and primer extension method. We found that genes that displayed allelic variation were distributed throughout the human genome and were enriched in certain chromosome regions. The SNPs and genes identified in this study will provide a rich source for evaluating the effects of those SNPs and associated haplotypes in human health and diseases.  相似文献   

4.
Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (?1494?G?>?A; indel 40?bp; and ?182?C?>?G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40?bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.  相似文献   

5.
单核苷酸多态性(SNPs)是人类基因组中最常见的变异形式。作为第三代遗传标记,SNP在基因定位、克隆、遗传多态性方面具有广泛应用,特别是作为基因诊断标记在预防医学中具有十分重要的作用。近年来,随着人类基因组计划的发展,数以百万计的SNP被陆续发现,并可在公共数据库中免费获得。SNP数量的快速增加和SNP检测方法的发展,为其在肿瘤易感性领城的应用提供了可能。在本综述中,我们介绍了几种高通量检测SNP的分析方法,总结了大规模SNP分析技术在肿瘤易感性中的应用,介绍了目前人们对于不同人群中的SNP分析、肿瘤易感基因、个体肿瘤易感性的理解,以及研究SNP标记与肿瘤易感性关系时存在的难点。  相似文献   

6.
The TP53 gene (encoding the p53 tumor suppressor) is rarely mutated, although frequently inactivated, in medulloblastoma and ependymoma. Recent work in mouse models showed that the loss of p53 accelerated the development of medulloblastoma. The mechanism underlying p53 inactivation in human brain tumors is not completely understood. We show that ubiquitination factor E4B (UBE4B), an E3 and E4 ubiquitin ligase, physically interacts with p53 and Hdm2 (also known as Mdm2 in mice). UBE4B promotes p53 polyubiquitination and degradation and inhibits p53-dependent transactivation and apoptosis. Notably, silencing UBE4B expression impairs xenotransplanted tumor growth in a p53-dependent manner and overexpression of UBE4B correlates with decreased expression of p53 in these tumors. We also show that UBE4B overexpression is often associated with amplification of its gene in human brain tumors. Our data indicate that amplification and overexpression of UBE4B represent previously undescribed molecular mechanisms of inactivation of p53 in brain tumors.  相似文献   

7.
Song MY  Kim HE  Kim S  Choi IH  Lee JK 《Gene》2012,493(2):211-218
Polymorphism and variations in gene expression provide the genetic basis for human variation. Allelic variation of gene expression, in particular, may play a crucial role in phenotypic variation and disease susceptibility. To identify genes with allelic expression in human cells, we genotyped genomic DNA and cDNA isolated from 31 immortalized B cell lines from three Centre d'Etude du Polymorphisme Humain (CEPH) families using high-density single-nucleotide polymorphism (SNP) chips containing 13,900 exonic SNPs. We identified seven SNPs in five genes with monoallelic expression, 146 SNPs in 125 genes with allelic imbalance in expression with preferentially higher expression of one allele in a heterozygous individual. The monoallelically expressed genes (ERAP2, MDGA1, LOC644422, SDCCAG3P1 and CLTCL1) were regulated by cis-acting, non-imprinted differential allelic control. In addition, all monoallelic gene expression patterns and allelic imbalances in gene expression in B cells were transmitted from parents to offspring in the pedigree, indicating genetic transmission of allelic gene expression. Furthermore, frequent allele substitution, probably due to RNA editing, was also observed in 21 genes in 23 SNPs as well as in 48 SNPs located in regions containing no known genes. In this study, we demonstrated that allelic gene expression is frequently observed in human B cells, and SNP chips are very useful tools for detecting allelic gene expression. Overall, our data provide a valuable framework for better understanding allelic gene expression in human B cells.  相似文献   

8.
Psoriasis is a common skin disorder of multifactorial origin. Genomewide scans for disease susceptibility have repeatedly demonstrated the existence of a major locus, PSORS1 (psoriasis susceptibility 1), contained within the major histocompatibility complex (MHC), on chromosome 6p21. Subsequent refinement studies have highlighted linkage disequilibrium (LD) with psoriasis, along a 150-kb segment that includes at least three candidate genes (encoding human leukocyte antigen-C [HLA-C], alpha-helix-coiled-coil-rod homologue, and corneodesmosin), each of which has been shown to harbor disease-associated alleles. However, the boundaries of the minimal PSORS1 region remain poorly defined. Moreover, interpretations of allelic association with psoriasis are compounded by limited insight of LD conservation within MHC class I interval. To address these issues, we have pursued a high-resolution genetic characterization of the PSORS1 locus. We resequenced genomic segments along a 220-kb region at chromosome 6p21 and identified a total of 119 high-frequency SNPs. Using 59 SNPs (18 coding and 41 noncoding SNPs) whose position was representative of the overall marker distribution, we genotyped a data set of 171 independently ascertained parent-affected offspring trios. Family-based association analysis of this cohort highlighted two SNPs (n.7 and n.9) respectively lying 7 and 4 kb proximal to HLA-C. These markers generated highly significant evidence of disease association (P<10-9), several orders of magnitude greater than the observed significance displayed by any other SNP that has previously been associated with disease susceptibility. This observation was replicated in a Gujarati Indian case/control data set. Haplotype-based analysis detected overtransmission of a cluster of chromosomes, which probably originated by ancestral mutation of a common disease-bearing haplotype. The only markers exclusive to the overtransmitted chromosomes are SNPs n.7 and n.9, which define a 10-kb PSORS1 core risk haplotype. These data demonstrate the power of SNP haplotype-based association analyses and provide high-resolution dissection of genetic variation across the PSORS1 interval, the major susceptibility locus for psoriasis.  相似文献   

9.
Fbxw7 is the F-box protein component of an SCF-type ubiquitin ligase that contributes to the ubiquitin-dependent degradation of cell cycle activators and oncoproteins. Three isoforms (alpha, beta, and gamma) of Fbxw7 are produced from mRNAs with distinct 5' exons. We have now investigated regulation of Fbxw7 expression in mouse tissues. Fbxw7alpha mRNA was present in all tissues examined, whereas Fbxw7beta mRNA was detected only in brain and testis, and Fbxw7gamma mRNA in heart and skeletal muscle. The amount of Fbxw7alpha mRNA was high during quiescence (G0 phase) in mouse embryonic fibroblasts (MEFs) and T cells, but it decreased markedly as these cells entered the cell cycle. The abundance of Fbxw7alpha mRNA was unaffected by cell irradiation or p53 status. In contrast, X-irradiation increased the amount of Fbxw7beta mRNA in wild-type MEFs but not in those from p53-deficient mice, suggesting that radiation-induced up-regulation of p53 leads to production of Fbxw7beta mRNA. Our results thus indicate that expression of Fbxw7 isoforms is differentially regulated in a cell cycle- or p53-dependent manner.  相似文献   

10.
Phang BH  Chua HW  Li H  Linn YC  Sabapathy K 《PloS one》2011,6(1):e15320
Multiple single nucleotide polymorphisms (SNPs) have been identified in the tumor suppressor gene p53, though the relevance of many of them is unclear. Some of them are also differentially distributed in various ethnic populations, suggesting selective functionality. We have therefore sequenced all exons and flanking regions of p53 from the Singaporean Chinese population and report here the characterization of some novel and uncharacterized SNPs - four in intron 1 (nucleotide positions 8759/10361/10506/11130), three in intron 3 (11968/11969/11974) and two in the 3'UTR (19168/19514). Allelic frequencies were determined for all these and some known SNPs, and were compared in a limited scale to leukemia and lung cancer patient samples. Intron 2 (11827) and 7 (14181/14201) SNPs were found to have a high minor allele frequency of between 26-47%, in contrast to the lower frequencies found in the US population, but similar in trend to the codon 72 polymorphism (SNP12139) that shows a distribution pattern correlative with latitude. Several of the SNPs were linked, such as those in introns 1, 3 and 7. Most interestingly, we noticed the co-segregation of the intron 2 and the codon 72 SNPs, the latter which has been shown to be expressed in an allele-specific manner, suggesting possible regulatory cross-talk. Association analysis indicated that the T/G alleles in both the co-segregating intron 7 SNPs and a 4tagSNP haplotype was strongly associated increased susceptibility to lung cancer in non-smoker females [OR: 1.97 (1.32, 3.394)]. These data together demonstrate high SNP diversity in p53 gene between different populations, highlighting ethnicity-based differences, and their association with cancer risk.  相似文献   

11.
F-box and WD repeat domain-containing 7 (Fbxw7/hAgo/hCdc4/Fbw7) is a p53-dependent tumor suppressor and leads to ubiquitination-mediated suppression of several oncoproteins including c-Myc, cyclin E, Notch, c-Jun and others. Our previous study has indicated that low expression of Fbxw7 was negatively correlated with c-Myc, cyclin E and mutant-p53 in hepatocellular carcinoma (HCC) tissues. But the role and mechanisms of Fbxw7 in HCC are still unknown. Here, we investigated the function of Fbxw7 in HCC cell lines and the anti-tumor activity of recombinant human adenovirus-p53 injection (rAd-p53, Gendicine) administration in vitro and in vivo. Fbxw7-specific siRNA enhanced expression of c-Myc and cyclin E proteins and increased proliferation in cell culture. rAd-p53 inhibited tumor cell growth with Fbxw7 upregulation and c-Myc and cyclin E downregulation in vitro and a murine HCC model. This effect could be partially reverted using Fbxw7-specific siRNA. Here, we suggest that the activation of Fbxw7 by adenoviral delivery of p53 leads to increased proteasomal degradation of c-Myc and cyclin E enabling growth arrest and apoptosis. Addressing this pathway, we identified that rAd-p53 could be a potential therapeutic agent for HCC.  相似文献   

12.
13.
14.
The polymorphisms of the tumor suppressor gene p53 in exon 4 (p53 BstUI) and in intron 6 (p53 MspI) have been suggested to be associated with the genetically determined susceptibility in diverse types of human cancer. In our hospital-based case-control study, we examined the allele and genotype incidence of these polymorphisms as well as their haplotype combinations in 60 brain tumor patients (27 males and 33 females) and 183 controls without malignancies. The genotype characteristics were determined by the PCR-based RFLP method using DNA extracted from peripheral blood. In this study we show that the p53 BstUI and the p53 MspI polymorphisms are not associated with increased risk of brain tumors. Thus, we conclude that the p53 BstUI and the p53 MspI polymorphic sites within the tumor suppressor gene p53 do not represent genetic determinants of susceptibility to brain tumors.  相似文献   

15.
G-protein coupled receptor GPR30 has been demonstrated to mediate estrogenic effects on essential features of human breast cancer cells. Polymorphisms in GPR30 gene might therefore affect breast cancer susceptibility or tumor characteristics. This is the first study examining allele and genotype frequencies of GPR30 single nucleotide polymorphisms (SNPs) in breast cancer patients. A total of 257 sporadic breast cancer cases and 247 age-matched controls were genotyped for three GPR30 polymorphisms by means of allele-specific tetra-primer PCR. Comparison of the breast cancer case and the control group with regard to the SNP allele, genotype and haplotype frequencies did not show significant differences. In contrast, the GPR30 SNPs tested were significantly associated with tumor size, histological grading, nodal status and progesterone receptor (PR) status. The A allele of SNP rs3808351 was significantly less frequent in patients with large or G3 tumors, T allele of SNP rs11544331 less frequently occurred in patients with positive nodal status, suggesting that both SNPs might exert protective effects regarding aggressive breast cancer entities. Both homozygous GG genotype of promoter SNP rs3808350 and T allele of missense SNP rs11544331 were inversely associated with PR-negativity, suggesting that they might exert protective effects regarding development of PR-negative cancer. In conclusion, the results of this study support the important role of GPR30 in breast cancer and encourage functional studies on the molecular mechanisms underlying the association of GPR30 polymorphisms with PR status and tumor growth.  相似文献   

16.
We have developed a genotyping system for detecting genetic contamination in the laboratory mouse based on assaying single-nucleotide polymorphism (SNP) markers positioned on all autosomes and the X chromosome. This system provides a fast, reliable, and cost-effective way for genetic monitoring, while maintaining a very high degree of confidence. We describe the allelic distribution of 235 SNPs in 48 mouse strains, thereby creating a database of polymorphisms useful for genotyping purposes. The SNP markers used in this study were chosen from publicly available SNP databases. Four genotyping methods were evaluated, and dynamic two-tube allele-specific PCR assays were developed for each marker and tested on a set of 48 inbred mouse strains. The minimal number of assays sufficient to distinguish groups consisting of different numbers of mouse strains was estimated, and a panel of 28 SNPs sufficient to distinguish virtually all of the inbred strains tested was selected. Amplifluor SNP detection assays were developed for these markers and tested on an extended list of 96 strains. This panel was used as a genetic quality control approach to monitor the genotypes of nearly 300 inbred, wild-derived, congenic, consomic, and recombinant inbred strains maintained at The Jackson Laboratory. We have concluded that this marker panel is sufficient for genetic contamination monitoring in colonies containing a large number of genetically diverse mouse strains and that reduced versions of the panel could be implemented in facilities housing a lower number of strains.  相似文献   

17.
18.
Exposure to (solar) UVB radiation gives rise to mutations in the p53 tumor suppressor gene that appear to contribute to the earliest steps in the molecular cascade towards human and murine skin cancer. To examine in more detail the role of p53, we studied UVB-induced carcinogenesis in hairless p53 knock-out mice. The early onset of lymphomas as well as early wasting of mice interfered with the development of skin tumors in p53 null-mice. The induction of skin tumors in the hairless p53+/- mice was accomplished by daily exposure to two different UV-doses of approximately 450 J/m2 and 900 J/m2 from F40 lamps corresponding to a fraction of about 0.4 and 0.8 of the minimal edemal dose. Marked differences in skin carcinogenesis were observed between the p53+/- mice and their wild type littermates. Firstly, at 900 J/m2, tumors developed significantly faster in the heterozygotes than in wild types, whereas at 450 J/m2 there was hardly any difference, suggesting that only at higher damage levels loss of one functional p53 allele is important. Secondly, a large portion (25%) of skin tumors in the heterozygotes were of a more malignant, poorly differentiated variety of squamous cell carcinomas, i.e. spindle cell carcinomas, a tumor type that was rarely observed in daily UV exposed wild type hairless mice. Thirdly, the p53 mutation spectrum in skin tumors in heterozygotes is quite different from that in wild types. Together these results support the notion that a point mutation in the p53 gene impacts skin carcinogenesis quite differently than allelic loss: the former is generally selected for in early stages of skin tumors in wild type mice, whereas the latter enhances tumor development only at high exposure levels (where apoptosis becomes more prevalent) and appears to increase progression (to a higher grade of malignancy) of skin tumors.  相似文献   

19.
DyeDeoxy terminator cycle sequencing of allele-specific polymerase chain reaction products has shown that there is a highly polymorphic d(AAAAT) pentanucleotide repeat within the first intron of the human p53 gene. This provides a genetic marker for tumor suppressor p53 gene alterations.  相似文献   

20.
BACKGROUND: Genetic susceptibility to diseases is likely influenced by common DNA variants in the form of single nucleotide polymorphisms (SNPs). The value of SNPs for linkage and association mapping studies may depend on the distribution of SNP allele frequencies across populations. OBJECTIVES: To establish the SNP allelic frequencies among Caucasian and African American women for tumor necrosis factor (TNF)alpha, transforming growth factor (TGF)beta1, interleukin-10 (IL10), interleukin-6 (IL6), and interferon (IFN)gamma. MATERIALS AND METHODS: DNA was extracted from whole blood from 123 healthy, pregnant women. PCR-based genotyping was performed for the genes encoding TNFalpha (-308G/A), TGFbeta1 (codon 10C/T, codon 25C/G), IL10 (-1082A/G, -819T/C, -592A/C), IL6 (-174C/G) and IFNgamma (874T/A). Allele frequencies were determined by Hardy-Weinberg Equilibrium and Linkage Disequilibrium tests. Differences in the SNP allelic frequencies between Caucasians and African Americans were assessed by the chi(2) of Amitage trend test. RESULTS: SNP allelic and genotypic frequencies for IL6 and IFNgamma, but not for TNFalpha, TGFbeta1, and IL10, differed significantly between the Caucasian and African American women. CONCLUSIONS: Recognition of racial differences in SNP allelic and genotypic frequencies for selected cytokines is important for designing and powering future linkage and association mapping studies investigating the role of cytokines in human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号