首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied diversity and distribution of transposable elements residing in different strains (DSM 11072, DSM 11073, DSM 65, and LMD 82.5) of a soil bacterium Paracoccus pantotrophus (alpha-Proteobacteria). With application of a shuttle entrapment vector pMEC1, several novel insertion sequences (ISs) and transposons (Tns) have been identified. They were sequenced and subjected to detailed comparative analysis, which allowed their characterization (i.e., identification of transposase genes, terminal inverted repeats, as well as target sequences) and classification into the appropriate IS or Tn families. The frequency of transposition of these elements varied and ranged from 10(-6) to 10(-3) depending on the strain. The copy number, localization (plasmid or chromosome), and distribution of these elements in the Paracoccus species P. pantotrophus, P. denitrificans, P. methylutens, P. solventivorans, and P. versutus were analyzed. This allowed us to distinguish elements that are common in paracocci (ISPpa2, ISPpa3--both of the IS5 family--and ISPpa5 of IS66 family) as well as strain-specific ones (ISPpa1 of the IS256 family, ISPpa4 of the IS5 family, and Tn3434 and Tn5393 of the Tn3 family), acquired by lateral transfer events. These elements will be of a great value in the design of new genetic tools for paracocci, since only one element (IS1248 of P. denitrificans) has been described so far in this genus.  相似文献   

2.
3.
A derivative of Tn5 with direct terminal repeats can transpose   总被引:9,自引:0,他引:9  
The 5.7 kb4 transposable kanamycin resistance determinant Tn5 contains 1.5 kb terminal inverted repeats which we here call arms. Tn5's arms contain the genes and sites necessary for Tn5 transposition, and are not homologous to previously described transposable elements. To determine whether one or both arms is a transposable (IS) element, we transposed Tn5 to pBR322 and used restriction endonuclease digestion and ligation in vitro to generate plasmid derivatives designated pTn5-DR1 and pTn5-DR2 in which Tn5's arms were present in direct rather than in inverted orientation. Analysis of transposition products from dimeric forms of the pTn5-DR1 plasmid to phage λ showed that the outside and inside termini of right and of left arms could function in transposition. We conclude that both of Tn5's arms are transposable elements and name them IS50L (left) and IS50R (right). IS50R, which encodes transposase, was used several-fold more frequently than IS50L, which contain an ochre mutant allele of transposase: this implies that Tn5's transposase acts preferentially on the DNA segment which encodes it. Analysis of transpositions of the amprkanr element Tn5-DR2 to the lac operon showed that Tn5-DR2, like Tn5 wild-type, exhibits regional preference without strict site specificity in the choice of insertion sites.  相似文献   

4.
The complete nucleotide sequence of an 8447 bp-long mercury-resistance transposon (Tn 5053 ) has been determined. Tn 5053 is composed of two modules: (i) the mercury-resistance module and (ii) the transposition module. The mercury-resistance module carries a mer operon, merRTPFAD , and appears to be a single-ended relic of a transposon closely related to the classical mercury-resistance transposons Tn 21 and Tn 501 . The transposition module of Tn 5053 is bounded by 25 bp terminal inverted repeats and contains four genes involved in transposition, i.e. tniA, tniB, tniQ , and tniR . Transposition of Tn 5053 occurs via cointegrate formation mediated by the products of the tniABQ genes, followed by site-specific cointegrate resolution. This is catalysed by the product of the tniR gene at the res region, which is located upstream of tniR . The same pathway of transposition is used by Tn 402 (Tn 5090 ) which carries the integron of R751. Transposition genes of Tn 5053 and Tn 402 are interchangeable. Sequence analysis suggests that Tn 5053 and Tn 402 are representatives of a new family of transposable elements, which fall into a recently recognized superfamily of transposons including retroviruses, insertion sequences of the IS 3 family, and transposons Tn 552 and Tn 7 . We suggest that the tni genes were involved in the dissemination of integrons.  相似文献   

5.
Six kinds of new insertion sequences (ISs), IS667 to IS672, a group II intron (Oi.Int), and an incomplete transposon (Tn852loi) were identified in the 3,630,528-bp genome of the extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831. Of 19 ISs identified in the HTE831 genome, 7 were truncated, indicating the occurrence of internal rearrangement of the genome. All ISs except IS669 generated a 4- to 8-bp duplication of the target site sequence, and these ISs carried 23- to 28-bp inverted repeats (IRs). Sequence analysis revealed that four ISs (IS669, IS670, IS671, and IS672) were newly identified as belonging to separate IS families (IS200/IS605, IS30, IS5, and IS3, respectively). IS667 and IS668 were also characterized as new members of the ISL3 family. Tn8521oi, which belongs to the Tn3 family as a new member, generated a 5-bp duplication of the target site sequence and carried complete 38-bp IRs. Of the eight protein-coding sequences (CDSs) identified in Tn8521oi, three CDSs (OB481, OB482, and OB483) formed a ger gene cluster, and two other paralogous gene clusters were found in the HTE831 genome. Most of the ISs and the group II intron widely distributed throughout the genome were inserted in noncoding regions, while two ISs (IS667-08 and IS668-02) and Oi.Int-04 were inserted in the coding regions.  相似文献   

6.
Three copies of the IS21-related transposable element IS1415 were identified in Rhodococcus erythropolis NI86/21. Adjacent to one of the IS1415 copies, a 47-bp sequence nearly identical to the conserved 5' end of integrons was found. Accurate transposition of IS1415 carrying a chloramphenicol resistance gene (Tn5561) was demonstrated following delivery from a suicide vector to R. erythropolis SQ1.  相似文献   

7.
The extent and nature of tetracycline resistance in bacterial populations of two apple orchards with no or a limited history of oxytetracycline usage were assessed. Tetracycline-resistant (Tc(r)) bacteria were mostly gram negative and represented from 0 to 47% of the total bacterial population on blossoms and leaves (versus 26 to 84% for streptomycin-resistant bacteria). A total of 87 isolates were screened for the presence of specific Tc(r) determinants. Tc(r) was determined to be due to the presence of Tet B in Pantoea agglomerans and other members of the family Enterobacteriacae and Tet A, Tet C, or Tet G in most Pseudomonas isolates. The cause of Tc(r) was not identified in 16% of the isolates studied. The Tc(r) genes were almost always found on large plasmids which also carried the streptomycin resistance transposon Tn5393. Transposable elements with Tc(r) determinants were detected by entrapment following introduction into Escherichia coli. Tet B was found within Tn10. Two of eighteen Tet B-containing isolates had an insertion sequence within Tn10; one had IS911 located within IS10-R and one had Tn1000 located upstream of Tet B. Tet A was found within a novel variant of Tn1721, named Tn1720, which lacks the left-end orfI of Tn1721. Tet C was located within a 19-kb transposon, Tn1404, with transposition genes similar to those of Tn501, streptomycin (aadA2) and sulfonamide (sulI) resistance genes within an integron, Tet C flanked by direct repeats of IS26, and four open reading frames, one of which may encode a sulfate permease. Two variants of Tet G with 92% sequence identity were detected.  相似文献   

8.
The insertion sequence IS6100, belonging to the IS6 family, normally forms a cointegrate as an end product of transposition. The IS6100-based minitransposon, Tn1792, has been developed as a genetic tool to mutagenise antibiotic-producing Streptomyces. Here, we describe resolution of Tn1792 cointegrates in Streptomyces avermitilis that can facilitate both the initial isolation of Tn1792 insertion mutants and also the subsequent rescue of Tn1792-tagged sequences. This is the first reported example of cointegrate resolution for an IS6-type transposable element. As a result of mutagenesis, several putative genes involved in morphological development and antibiotic production have been isolated.  相似文献   

9.
Transposon Tn10 is a composite element in which two individual insertion sequence (IS)-like sequences cooperate to mediate transposition of the intervening material. The two flanking IS10 elements are not identical; IS10-right is responsible for functions required to promote transposition, and IS10-left is defective in transposition functions. We suggest that the two IS10 elements were originally identical in sequence and have subsequently diverged. IS10-right is compactly organized with structural gene(s), promoters, and sites important for transposition and (presumably) its regulation all closely linked and, in some cases, overlapping. IS10 has a single major coding region that almost certainly encodes an essential transposition function. A pair of opposing promoters flank the start of this coding region. One of these promoters is responsible for expression in vivo of transposon-encoded transposition functions. We propose that the second promoter is involved in modulation of Tn10 transposition. Genetic analysis suggests that transposon-encoded function(s) may be preferentially cis-acting. Insertion of Tn10 into particular preferred target sites is due primarily to the occurrence of a particular six-base pair target DNA sequence. The properties of this sequence suggest that symmetrically disposed subunits of a single protein may be responsible for both recognition and cleavage of target DNA during insertion.  相似文献   

10.
11.
Three novel insertion sequences (ISs) (ISPso1, ISPso2, and ISPso3) of the soil bacterium Paracoccus solventivorans DSM 11592 were identified by transposition into entrapment vector pMEC1. ISPso1 (1,400 bp) carries one large open reading frame (ORF) encoding a putative basic protein (with a DDE motif conserved among transposases [Tnps] of elements belonging to the IS256 family) with the highest levels of similarity with the hypothetical Tnps of Rhodospirillum rubrum and Sphingopyxis macrogoltabida. ISPso2 (832 bp) appeared to be closely related to ISPpa2 of Paracoccus pantotrophus DSM 11072 and IS1248 of Paracoccus denitrificans PdX22, both of which belong to the IS427 group (IS5 family). These elements contain two overlapping ORFs and a putative frameshift motif (AAAAG) responsible for production of a putative transframe Tnp. ISPso3 (1,286 bp) contains a single ORF, whose putative product showed homology with Tnps of ISs classified as members of a distinct subgroup of the IS5 group of the IS5 family. The highest levels of similarity were observed with ISSsp126 of Sphingomonas sp. and IS1169 of Bacteroides fragilis. Analysis of the distribution of ISs of P. solventivorans revealed that ISPso2-like elements are the most widely spread of the elements in nine species of the genus PARACOCCUS: ISPso1 and ISPso3 are present in only a few paracoccal strains, which suggests that they were acquired by lateral transfer. Phylogenetic analysis of Tnps of the novel ISs and their closest relatives showed their evolutionary relationships and possible directions of lateral transfer between various bacterial hosts.  相似文献   

12.
Insertion sequences (ISs) are the smallest and most frequent transposable elements in prokaryotes where they play an important evolutionary role by promoting gene inactivation and genome plasticity. Their genomic abundance varies by several orders of magnitude for reasons largely unknown and widely speculated. The current availability of hundreds of genomes renders testable many of these hypotheses, notably that IS abundance correlates positively with the frequency of horizontal gene transfer (HGT), genome size, pathogenicity, nonobligatory ecological associations, and human association. We thus reannotated ISs in 262 prokaryotic genomes and tested these hypotheses showing that when using appropriate controls, there is no empirical basis for IS family specificity, pathogenicity, or human association to influence IS abundance or density. HGT seems necessary for the presence of ISs, but cannot alone explain the absence of ISs in more than 20% of the organisms, some of which showing high rates of HGT. Gene transfer is also not a significant determinant of the abundance of IS elements in genomes, suggesting that IS abundance is controlled at the level of transposition and ensuing natural selection and not at the level of infection. Prokaryotes engaging in obligatory associations have fewer ISs when controlled for genome size, but this may be caused by some being sexually isolated. Surprisingly, genome size is the only significant predictor of IS numbers and density. Alone, it explains over 40% of the variance of IS abundance. Because we find that genome size and IS abundance correlate negatively with minimal doubling times, we conclude that selection for rapid replication cannot account for the few ISs found in small genomes. Instead, we show evidence that IS numbers are controlled by the frequency of highly deleterious insertion targets. Indeed, IS abundance increases quickly with genome size, which is the exact inverse trend found for the density of genes under strong selection such as essential genes. Hence, for ISs, the bigger the genome the better.  相似文献   

13.
A new member of the IS605 transposable element family, designated ISHp608, was found by subtractive hybridization in Helicobacter pylori. Like the three other insertion sequences (ISs) known in this gastric pathogen, it contains two open reading frames (orfA and orfB), each related to putative transposase genes of simpler (one-gene) elements in other prokaryotes; orfB is also related to the Salmonella virulence gene gipA. PCR and hybridization tests showed that ISHp608 is nonrandomly distributed geographically: it was found in 21% of 194 European and African strains, 14% of 175 Bengali strains, 43% of 131 strains from native Peruvians and Alaska natives, but just 1% of 223 East Asian strains. ISHp608 also seemed more abundant in Peruvian gastric cancer strains than gastritis strains (9 of 14 versus 15 of 45, respectively; P = 0.04). Two ISHp608 types differing by approximately 11% in DNA sequence were identified: one was widely distributed geographically, and the other was found only in Peruvian and Alaskan strains. Isolates of a given type differed by < or = 2% in DNA sequence, but several recombinant elements were also found. ISHp608 marked with a resistance gene was found to (i) transpose in Escherichia coli; (ii) generate simple insertions during transposition, not cointegrates; (iii) insert downstream of the motif 5"-TTAC without duplicating target sequences; and (iv) require orfA but not orfB for its transposition. ISHp608 represents a widespread family of novel chimeric mobile DNA elements whose further analysis should provide new insights into transposition mechanisms and into microbial population genetic structure and genome evolution.  相似文献   

14.
Composite transposons are key vehicles for the worldwide spreading of genes that allow bacteria to survive toxic compounds. Composite transposons consist of two smaller transposable elements called insertion sequences (ISs), which flank the genes that permit such survival. Each IS in a composite transposon can either transpose alone, selfishly, or it can transpose cooperatively, jointly with the other IS. Cooperative transposition can enhance an IS's chance of survival, but it also carries the risk of transposon destruction. I use game theory to show that the conditions under which cooperative transposition is an evolutionarily stable strategy (ESS) are not biologically realistic. I then analyze the distribution of thousands of ISs in more than 200 bacterial genomes to test the following prediction of the game-theoretical model: if cooperative transposition was an ESS, then the closely spaced ISs that characterize composite transposons should be more abundant in genomes than expected by chance. The data show that this is not the case. Cooperativity can only be maintained in a transitional, far-from-equilibrium state shortly after a selection pressure first arises. This is the case in the spreading of antibiotic resistance, where we are witnessing a fleeting moment in evolution, a moment in which cooperation among selfish DNA molecules has provided a means of survival. Because such cooperation does not pay in the long run, the vehicles of such survival will eventually disappear again. My analysis demonstrates that game theory can help explain behavioral strategies even for mobile DNA.  相似文献   

15.
Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida   总被引:3,自引:0,他引:3  
The TOL plasmid pWW0 (117 kb) is the best studied catabolic plasmid and the archetype of the IncP-9 plasmid incompatibility group from Pseudomonas. It carries the degradative (xyl) genes for toluenes and xylenes within catabolic transposons Tn4651 and Tn4653. Analysis of the complete pWW0 nucleotide sequence revealed 148 putative open reading frames. Of these, 77 showed similarity to published sequences in the available databases predicting functions for: plasmid replication, stable maintenance and transfer; phenotypic determinants; gene regulation and expression; and transposition. All identifiable transposition functions lay within the boundaries of the 70 kb transposon Tn4653, leaving a 46 kb sector containing all the IncP-9 core functions. The replicon and stable inheritance region was very similar to the mini-replicon from IncP-9 antibiotic resistance plasmid pM3, with their Rep proteins forming a novel group of initiation proteins. pWW0 transfer functions exist as two blocks encoding putative DNA processing and mating pair formation genes, with organizational and sequence similarity to IncW plasmids. In addition to the known Tn4651 and IS1246 elements, two additional transposable elements were identified as well as several putative transposition functions, which are probably genetic remnants from previous transposition events. Genes likely to be responsible for known resistance to ultraviolet light and free radicals were identified. Other putative phenotypic functions identified included resistance to mercury and other metal ions, as well as to quaternary ammonium compounds. The complexity and size of pWW0 is largely the result of the mosaic organization of the transposable elements that it carries, rather than the backbone functions of IncP-9 plasmids.  相似文献   

16.
Copy Number Control of Tn5 Transposition   总被引:12,自引:1,他引:11  
Transposition of Tn5 in Escherichia coli strains containing one or multiple copies of the transposable element was investigated. It was found that the overall frequency of transposition within a cell remained constant regardless of the number of copies of Tn5 present in that cell. Experiments measuring the transposition frequency of differentially marked Tn5s confirmed that the frequency of transposition of an individual Tn5 decreased proportionally with the total number of copies of the element present in a cell. The IS50R -encoded function, protein 2, which has previously been shown to be an inhibitor of transposition, is sufficient to mediate this inhibitory effect. The concentration of protein 2 in a cell appears to modulate the transposition of individual Tn5 elements in such a way that the overall transposition of Tn5 in a cell remains constant.  相似文献   

17.
The citrate utilization (Cit+) transposon Tn3411 was shown to be flanked by directly repeated sequences (IS3411L and IS3411R) by restriction enzyme analysis and electron microscope observation. Cit- deletion mutants were frequently found to be generated in pBR322::Tn3411 by intramolecular recombination between the two copies of IS3411. The flanking IS3411 elements of Tn3411 were shown to be functional insertion sequences by Tn3411-mediated direct and inverse transposition. Tn3411-mediated inverse transposition from pBR322::Tn3411 to the F-plasmid derivative pED100 occurred more efficiently than that of direct transposition of the Cit+ determinant. This was thought to be due to the differential transposability of IS3411L and IS3411R in the transposition process. The frequency of transposition of IS3411 marked with a chloramphenicol resistance determinant was much higher than IS3411-mediated cointegrate formation, suggesting that replicon fusions are not essential intermediates in the transposition process of Tn3411 or IS3411. Spontaneous deletions occurred with high frequency in recA hosts. The spontaneous deletion promoted by homologous recombination between two IS3411 elements in Tn3411 was examined with deletion mutants.  相似文献   

18.
The activity of several families of transposable elements (TEs) in the genome of Fusarium oxysporum represents a potential source of karyotypic instability. We investigated transposon-mediated chromosome rearrangements by analyzing the karyotypes of a set of strains in which transposition events had occurred. We uncovered exceptional electrophoretic karyotype (EK) variability, in both number and size of chromosomal bands. We showed that EK differences result from chromosomal translocations, large deletions, and even more complex rearrangements. We also revealed many duplicated chromosomal regions. By following transposition of two elements and analyzing the distribution of different families of TEs on whole chromosomes, we find (i) no evidence of chromosomal breakages induced by transposition, (ii) a clustering of TEs in some regions, and (iii) a correlation between the high level of chromosomal polymorphism and the concentration of TEs. These results suggest that chromosome length polymorphisms likely result from ectopic recombination between TEs that can serve as substrates for these changes.  相似文献   

19.
Insertion sequences (ISs) are simple mobile genetic elements capable of relocating within a genome. Through this transposition activity, they are known to create mutations which are mostly deleterious to the cell, although occasionally they are beneficial. Two closely related isolates of thermophilic Synechococcus species from hot spring microbial mats are known to harbor a large number of diverse ISs. To explore the mechanism of IS acquisition within natural populations and survival in the face of high IS abundance, we examined IS content and location in natural populations of Synechococcus by comparing metagenomic data to the genomes of fully sequenced cultured isolates. The observed IS distribution in the metagenome was equivalent to the distribution in the isolates, indicating that the cultured isolates are appropriate models for the environmental population. High sequence conservation between IS families shared between the two isolates suggests that ISs are able to move between individuals within populations and between species via lateral gene transfer, consistent with models for IS family accumulation. Most IS families show evidence of recent activity, and interruption of critical genes in some individuals was observed, demonstrating that transposition is an ongoing mutational force in the populations.  相似文献   

20.
Transfer factor pBFTM10, isolated from the obligate anaerobic bacterium Bacteroides fragilis, carries a clindamycin resistance determinant which we have suggested is part of a transposable element. DNA homologous to this determinant is found in many Clnr Bacteroides isolates, either in the chromosome or on plasmids. We have now established that Ccr resides on a transposon, Tn4400. In addition to the Ccr determinant that functions under anaerobic conditions in B. fragilis, Tn4400 also carries a determinant for tetracycline resistance (Tcr) which only functions in Escherichia coli under aerobic conditions. The presence of Tn4400 on pBFTM10 does not confer tetracycline resistance on B. fragilis cells containing it. DNA from pBFTM10 was cloned in E. coli, with pDG5 as the cloning vector, to form pGAT500. Using a mobilization assay involving pGAT500 and an F factor derivative, pOX38, we determined that a 5.6-kilobase region of pBFTM10 DNA was capable of mediating replicon fusion and transposition. Most of the mobilization products resulted from inverse transposition reactions, while some were the result of true cointegrate formation. Analysis of the cointegrate molecules showed that three were formed by the action of one of the ends of Tn4400 (IS4400), and one was formed by the action of the whole element (Tn4400). The cointegrate molecule carrying intact copies of Tn4400 at the junction of the two plasmids could resolve to yield an unaltered donor plasmid (pGAT500) and a conjugal plasmid containing a copy of Tn4400 or a copy of one insertion sequence element (pOX38::Tn4400 or pOX38::IS4400). Thus, Tn4400 is a compound transposon containing active insertion sequence elements as directly repeated sequences at its ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号