首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The level and pattern of nucleotide variation in duplicate genes provide important information on the evolutionary history of polyploids and divergent processes between homoeologous loci within lineages. Leymus, a group of allopolyploid species with the NsXm genomes, is a perennial genus with a diverse array of morphology, ecology, and distribution in Triticeae. To estimate the phylogeny and molecular evolution of a single-copy DMC1 gene in Leymus and its diploid relatives,DMC1 homoeologous sequences were isolated from the sampled Leymus species and were analyzed with those from 30 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that: (i) different Leymus species might derive their Ns genome from different Psathyrostachys species; (ii) Pseudoroegneria has contributed to the nuclear genome of some Leymus species, which might result from recurrent hybridization or incomplete lineage sorting; (iii) the Xm genome origin of Leymus could differ among species; (iv) rapid radiation and multiple origin might account for the rich diversity, numbers of species, and wide ecological adaptation of Leymus species; and (v) the DMC1 sequence diversity of the Ns genome in Leymus species was lower than that in the Psathyrostachys diploids, while the level of DMC1 sequence diversity in Leymus was higher than that in diploid Pseudoroegneria. Our results provide new insight on the evolutionary dynamics of duplicate DMC1 genes, polyploid speciation, and the phylogeny of Leymus species.  相似文献   

2.
窄颖仲彬草Kengyilia stenachyra(Keng) J.L. Yang ,Yen et Baum 是分布于我国西部的一种多年生六倍体植物。将其与犬草Elymus caninus(L.) L., 鹅观草Roegneria kamoji Ohwi, 糙毛仲彬草K.hirsuta (Keng) J.L.Yang,Yen et Baum 3 个种进行了杂交。对亲本及杂种F1 代花粉母细胞减数分裂中期I染色体配对行为进行了观察。减数分裂平均构型分别为: E. caninus×K. stenachyra23-79 Ⅰ+ 5-20 Ⅱ+ 0-27Ⅲ; R.kamoji ×K.stenachyra18-23 Ⅰ+ 11-68 Ⅱ+ 0-06 Ⅲ+ 0-06 Ⅳ; K.hirsuta ×K.stenachyra4-83Ⅰ+ 17-31 Ⅱ+ 0-55 Ⅲ+ 0-20 Ⅳ+ 0-02 Ⅴ。根据以上结果, 结合种的形态特征, 窄颖仲彬草应从鹅观草属Roegneria C. Koch 拟冰草组ParagropyronKeng 中组合到仲彬草属Kengyilia Yen et Yang。  相似文献   

3.
Kengyilia melanthera (Keng)J. L. Yang, Yen et Baum and K. kokonorica (Keng)J. L. Yang, Yen et Baum are two hexaploid perennial grasses of the tribe Triticeae native in west China. K. melanthera and K. kokonorica were hybridized with Roegneria kamoji Ohwi(2n=42,StStHHYY) and K. hirsuta (Keng)J. L. Yang, Yen et Baum (2n = 42, PPStStYY) respectively. Chromosome pairing behaviour at metaphase I in the parents and hybrids was studied. Meiotic configurations were 18.20 Ⅰ + 11.74 Ⅱ + 0.09 Ⅲ + 0.01V for R. kamoji×K. melanthera, 1.06Ⅰ + 20.47 Ⅱ for K. hirsuta×K. melanthera, 19.36Ⅰ + 11.26 Ⅱ + 0.04Ⅲ for R. kamoji×K. kokonorica, and2.46Ⅰ + 19.44Ⅱ + 0.14 Ⅲ + 0.06 Ⅳ for K. hirsuta×K. kokonorica. Considering chromosome pairing in the hybrids, as well as morphological characters, K. melanthera and K. kokonorica should be grouped in Kengyilia Yen et J. L. Yang instead of being keeped inRoegneria sect. Paragropyron Keng , or in Elymus L. or Elytrigia Desv.  相似文献   

4.
黑药仲彬草Kengyilia melanthera(Keng)J.L. Yang,Yen et Baum和青海仲彬草K.kokonorica (Keng)J.L.Yang,Yen et Baum是分布于我国西部的两种多年生六倍体植物。将其分别与鹅观草 Roegneria kamoji Ohwi(2n=42,StStHHYY)、糙毛仲彬草K.hirsuta(Keng)J.L. Yang,Yen et Baum (2n=42,PPStStYY)进行了杂交;对亲本及杂种Fl代花粉母细胞减数分裂中期I染色体配对行为进行 了观察。杂种F1减数分裂染色体配对平均构型分别为:R.kamoji×K.melanthera,18.201+11.74 Ⅱ 十0.09Ⅲ十0.01V;K.hirsuta×K.melanthera,1.06Ⅰ十20.47Ⅱ;R.kamoji×K.kokonori- ca,19.36Ⅰ十11.26Ⅱ十0.04Ⅲ;K.hirsuta×K.kokonorica,2.46Ⅰ十19.44Ⅱ 十0.14Ⅲ十0.06 Ⅳ。根据以上结果,并结合形态特征,将黑药仲彬草和青海仲彬草从鹅观草属拟冰草组Roegneria sect.Paragropyron Keng中组合到仲彬草属Kengyilia Yen et Yang更为恰当,而不应划分到披碱草属E-lymus L.或偃麦草属Elytrigia Desv.中。  相似文献   

5.
Wang Q  Liu H  Gao A  Yang X  Liu W  Li X  Li L 《PloS one》2012,7(2):e31033
Polyploidization is a major evolutionary process. Approximately 70–75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species'' ecotype evolution.  相似文献   

6.
Eleusine (Poaceae) includes six diploid and three polyploid species and has three basic chromosome numbers, x=8, 9 and 10. The species are annual as well as perennial and all are wild except E. coracana, which is cultivated for grain and fodder in Africa and the Indian subcontinent. Eleusine coracana and E. africana have the same genome and chromosome number (2n=36). Eleusine indica and E. floccifolia are identified as two genome donors to these polyploid species. Eleusine kigeziensis is the third polyploid species of the genus with 2n=38. Its genome may have come from E. jaegeri and from one of the species with x=9, most probably from E. indica. Eleusine indica, E. tristachya, E. floccifolia and E. intermedia with x=9 and two polyploid species, E. coracana and E. africana, are closely related and there is free genetic flow between them. Eleusine multiflora with x=8 is significantly different in morphology and at genomic level from other species. Eleusine jaegeri with x=10 is morphologically similar to E. indica, however, more information is needed to ascertain its position in the genus. Eleusine coracana, which is commonly called finger millet, is a potential and nutritious crop for the increasing population of the world, particularly in arid and semi-arid regions. It can also serve as a gene pool for various important characters and disease resistant genes. Received February 11, 2002; accepted May 27, 2002 Published online: October 14, 2002 Addresses of the authors: Madho Singh Bisht and Yasuhiko Mukai (e-mail: ymukai@cc.osaka-kyoiku.ac.jp), Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan.  相似文献   

7.
Kengyilia habahenensis, spec. nova, from the Altai mountains, China, is described morphologically and cytologically. It has 2n = 42 chromosomes, and the genome formula PYS.  相似文献   

8.
To study origin and evolutionary dynamics of tetraploid Elymus trachycaulus that has been cytologically defined as containing StH genomes, thirteen accessions of E. trachycaulus were analyzed using two low-copy nuclear gene Pepc (phosphoenolpyruvate carboxylase) and Rpb2 (the second largest subunit of RNA polymerase II), and one chloroplast region trnL–trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Our chloroplast data indicated that Pseudoroegneria (St genome) was the maternal donor of E. trachycaulus. Rpb2 data indicated that the St genome in E. trachycaulus was originated from either P. strigosa, P. stipifolia, P. spicata or P. geniculate. The Hordeum (H genome)-like sequences of E. trachycaulus are polyphyletic in the Pepc tree, suggesting that the H genome in E. trachycaulus was contributed by multiple sources, whether due to multiple origins or introgression resulting from subsequent hybridization. Failure to recovering St copy of Pepc sequence in most accessions of E. trachycaulus might be caused by genome convergent evolution in allopolyploids. Multiple copies of H-like Pepc sequence from each accession with relative large deletions and insertions might be caused by either instability of Pepc sequence in H- genome or incomplete concerted evolution. Our results highlighted complex evolutionary history of E. trachycaulus.  相似文献   

9.
10.
Genomic in situ hybridisation (GISH) and Southern genomic hybridisation were applied in order to gain further knowledge regarding generic delimitation of the genus Hystrix as well as to clarify the genomes of the Hystrix species H. patula, H. longearistata, H. coreana, H. duthiei and H. komarovii. The hybridisation intensity of different genomic probes was compared among the Hystrix species and with other Triticeae species. The Southern- and GISH results confirm that H. patula contains the StH genome and show that H. komarovii most likely has a variant of this StH genome. The other Hystrix species under study, i.e. H. longearistata, H. coreana and H. duthiei, contain an Ns basic genome, and most probably two variants of this basic genome, Ns 1 Ns 2 . The genus Hystrix is thus not a monophyletic group of species.  相似文献   

11.
To investigate the genome origin and phylogenetic relationships of Elymus villosus, three single-copy nuclear gene (Acc1, Pgk1 and DMC1) and chloroplast trnL-F gene sequences of two accessions of E. villosus were analyzed with those of eighteen allotetraploids (StH, StY, StP and StEe genomes) and thirty-five diploid taxa representing eighteen basic genomes in Triticeae. The results revealed that: (1) the genomic constitution of E. villosus is StH as Elymus; (2) North America Pseudoroegneria species served as the maternal donor during the allotetraploid speciation of E. villosus; (3) E. villosus is closely related to North America Elymus species; (4) it is reasonable to recognize the E. villosus as Elymus L. sensu stricto.  相似文献   

12.
对鹅观草属、披碱草属、猬草属和仲彬草属4属23个物种进行了RAMP分析。结果表明属间变异极大,多态性极高。31个引物组合产生的286条DNA扩增片段均具有多态性。聚类分析显示鹅观草属、披碱草属、猬草属和仲彬草属物种各自聚为一类;Roegneria alashanica、R.elytrigioides和R.magnticaespes聚类在一起;猬草属的模式种Hystrix patula与披碱草属物种聚类在一起,而Hystrix duthiei和H.longearistata单独聚为一类;形态相似、染色体组相同、地理分布一致的物种聚类在一起。本研究结果基本上同形态学和细胞学研究结果相吻合,将鹅观草属、披碱草属和仲彬草属作为属分类等级处理比较恰当,而猬草属的系统地位有待进一步确认。RAMP标记可作为评价多年生小麦族物种遗传多样性和亲缘关系的一种分子标记技术。  相似文献   

13.
Summary Chloroplast DNA (cpDNA) restriction endonuclease patterns are used to examine phylogenetic relationships between Bromus subgenera Festucaria and Ceratochloa. Festucaria is considered monophyletic based on the L genome, while Ceratochloa encompasses two species complexes: the B. catharticus complex, which evolved by combining three different genomes, and the B. carinatus complex, which is thought to have originated from hybridization between polyploid species of B. catharticus and diploid members of Festucaria. All species of subgenus Ceratochloa (hexaploids and octoploids) were identical in chloroplast DNA sequences. Similarly, polyploid species of subgenus Festucaria, except for B. auleticus, were identical in cpDNA sequences. In contrast, diploid species of subgenus Festucaria showed various degrees of nucleotide sequence divergence. Species of subgenus Ceratochloa appeared monophyletic and phylogenetically closely related to the diploid B. anomalus and B. auleticus of subgenus Festucaria. The remaining diploid and polyploid species of subgenus Festucaria appeared in a distinct grouping. The study suggests that the B. catharticus complex must have been the maternal parent in the proposed hybrid origin of B. carinatus complex. Although there is no direct evidence for the paternal parent of the latter complex, the cpDNA study shows the complex to be phylogenetically very related to the diploid B. anomalus of subgenus Festucaria.  相似文献   

14.
About 90 members of a major tandemly repeated DNA sequence family originally described in rye as pSc119.2 have been isolated from 11 diploid and polyploid Triticeae species using primers from along the length of the sequence for PCR amplification. Alignment and similarity analysis showed that the 120-bp repeat unit family is diverse with single nucleotide changes and few insertions and deletions occurring throughout the sequence, with no characteristic genome or species-specific variants having developed during evolution of the extant genomes. Fluorescent in situ hybridization showed that each of the large blocks of the repeat at chromosomal sites harboured many variants of the 120-bp repeat. There were substantial copy number differences between genomes, with abundant sub-terminal sites in rye, interstitial sites in the B genome of wheat, and relatively few sites in the A and D genome. We conclude that sequence homogenization events have not been operative in this repeat and that the common ancestor of the Triticeae tribe had multiple sequences of the 120-bp repeat with a range of variation not unlike that seen within and between species today. This diversity has been maintained when sites are moved within the genome and in all species since their divergence within the Triticeae.  相似文献   

15.
Roegneria is a polyploid perennial genus in the tribe Triticeae. Some species of Roegneria are morphologically similar to genus Elymus and have been classified in Elymus. To investigate the delimitation and phylogenetic relationships of Roegneria, nuclear (ITS, Acc1, and Pgk1) and chloroplast (trnL–trnF) DNA regions were sequenced for 38 allopolyploid species and 32 diploid species of Triticeae. Phylogenetic analyses of nuclear DNA revealed that all Roegneria species were included in the St and Y genome clades, and that the Y genome was closely related to the V and Xp genomes. The chloroplast DNA dataset showed that Roegneria species were grouped with Pseudoroegneria species. The Pseudoroegneria species from the Middle East (P. libanotica and P. tauri) and Central Asia (P. strigosa) were more closely related to Roegneria species. The results suggested that: (i) the species containing the St and Y genomes should be segregated from Elymus and treated as a distinct genus, Roegneria, based on the genomic constitution; (ii) P. libanotica, P. tauri, and/or P. strigosa potentially served as the maternal donor of the St genome in Roegneria; (iii) The Y genome of Roegneria originated from a diploid Y genome species, and the V and Xp genomes may have contributed to Y genome formation; (iv) among Roegneria species of previously uncertain genomic constitution, R. seriotina was tetraploid and possessed the StY genomes, E. calcicolus was hexaploid with the StYH genomic constitution and should be classified in Campeiostachys, R. glaucifolia possessed the StStY genomes, and R. tschimganica had the genomic constitution St1St2Y.  相似文献   

16.
17.
The Roegneria kamoji accession ZY 1007 was resistant to the mixed predominant races of Puccinia striiformis f.sp. tritici (Pst) in China based on field tests at adult‐plant stage. The seedling resistance evaluation of ZY 1007 showed that it was resistant to stripe rust physiological strains CYR29, CYR33 and PST‐V26, which were the predominant races of Pst in China. The female parent R. kamoji cv. Gansi No.1 (susceptible to Pst) was crossed with ZY 1007 (resistant to Pst). Parents, F1 and F2 populations were tested in a field inoculated with the mixed urediniospores. ZY 1007 and all the observed 11 F1 hybrid plants were resistant, while plants of Gansi No.1 were susceptible. Among the 221 F2 plants, 168 plants were resistant and 53 were susceptible, and the segregation of resistant and susceptible plants fits 3R:1S ratio (χ2 = 0.074, P > 0.75). It confirmed that the resistance of stripe rust in ZY 1007 was controlled by a single dominant gene and temporarily designated as YrK1007.  相似文献   

18.
To estimate the phylogeny and molecular evolution of a single-copy nuclear disrupted meiotic cDNA (DMC1) gene within the StH genome species, two DMC1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from seven diploid taxa representing the St and H genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) there is a close relationship among North American StH genome species; (2) the DMC1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) the StH genome polyploids have higher levels of sequence diversity in the St genome homoeolog than the H genome homoeolog; (4) the DMC1 sequence may evolve faster in the polyploid species than in the diploids; (5) high dN and dN/dS values in the St genome within polyploid species could be caused by low selective constraints or AT-biased mutation pressure. Our result provides some insight on evolutionary dynamics of duplicate DMC1 gene, the polyploidization events and phylogeny of the StH genome species.  相似文献   

19.
B R Baum  L G Bailey 《Génome》2000,43(1):79-85
Fifty-three units of 5S rDNA sequences from five accessions of Kengyilia rigidula, a member of the tribe Triticeae that also includes wheat, barley, rye, and their wild relatives, have been amplified by the polymerase chain reaction (PCR), cloned, and sequenced. The genome of K. rigidula consists of three haplomes, St, P, and Y. An evaluation of the aligned sequences of the diverse 53 different 5S DNA units yielded three 5S-unit classes. One unit class, Long S1, was assignable to the St haplome, one unit class, the Long P1, was assignable to the P haplome, and a third unit class, Long H1, was assignable to the H haplome. The last was expected to be assignable to the Y haplome, based on previous knowledge. Evolutionary scenarios are put forward to explain this finding. Among those possibilities is that the number of copies of units assignable to the Y haplome is very small and difficult to detect. Short units, reported earlier in K. alatavica, were not found in K. rigidula.  相似文献   

20.
Leymus is a genus in the Triticeae tribe, Poaceae. The taxa of this genus are allopolyploid species which possess the Ns and Xm genomes. According to cytological, cytogenetic and molecular genetic analyses, some species of Hystrix and Elymus ought to be transferred to this genus. A world revision of the genus Leymus is needed. In this paper we summarize experimental results, provide a key to sections, species and varieties, and list all the taxa we recognize in Leymus with their synonyms. This synopsis is a new taxonomic system to be used for the revision of Leymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号