首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successfully enforced marine protected areas (MPAs) have been widely demonstrated to allow, within their boundaries, the recovery of exploited species and beyond their boundaries, the spillover of juvenile and adult fish. Little evidence is available about the so-called ‘recruitment subsidy’, the augmented production of propagules (i.e. eggs and larvae) due to the increased abundance of large-sized spawners hosted within effective MPAs. Once emitted, propagules can be locally retained and/or exported elsewhere. Patterns of propagule retention and/or export from MPAs have been little investigated, especially in the Mediterranean. This study investigated the potential for propagule production and retention/export from a Mediterranean MPA (Torre Guaceto, SW Adriatic Sea) using the white sea bream, Diplodus sargus sargus, as a model species. A multidisciplinary approach was used combining 1) spatial distribution patterns of individuals (post-settlers and adults) assessed through visual census within Torre Guaceto MPA and in northern and southern unprotected areas, 2) Lagrangian simulations of dispersal based on an oceanographic model of the region and data on early life-history traits of the species (spawning date, pelagic larval duration) and 3) a preliminary genetic study using microsatellite loci. Results show that the MPA hosts higher densities of larger-sized spawners than outside areas, potentially guaranteeing higher propagule production. Model simulations and field observation suggest that larval retention within and long-distance dispersal across MPA boundaries allow the replenishment of the MPA and of exploited populations up to 100 km down-current (southward) from the MPA. This pattern partially agrees with the high genetic homogeneity found in the entire study area (no differences in genetic composition and diversity indices), suggesting a high gene flow. By contributing to a better understanding of propagule dispersal patterns, these findings provide crucial information for the design of MPAs and MPA networks effective to replenish fish stocks and enhance fisheries in unprotected areas.  相似文献   

2.
Estimates of early-life traits of fishes (e.g. pelagic larval duration (PLD) and spawning date) are essential for investigating and assessing patterns of population connectivity. Such estimates are available for a large number of both tropical and temperate fish species, but few studies have assessed their variability in space, especially across multiple scales. The present study, where a Mediterranean fish (i.e. the white seabream Diplodus sargus sargus) was used as a model, shows that spawning date and PLD are spatially more variable at a scale of kilometres than at a scale of tens to hundreds of kilometres. This study indicates the importance of considering spatial variability of early-life traits of fishes in order to properly delineate connectivity patterns at larval stages (e.g. by means of Lagrangian simulations), thus providing strategically useful information on connectivity and relevant management goals (e.g. the creation of networks of marine reserves).  相似文献   

3.
The transition phase describes a distinct post-settlement stage associated with the recruitment to benthic habitats by pelagic life stages. The habitat shift is often accompanied by feeding shifts and metamorphosis from larval to juvenile phases. Density-dependent settlement, growth and mortality are often the major factors controlling recruitment success of this phase. Habitat use also becomes more pronounced after settlement. The role of habitat-mediated post-settlement mortality is elucidated by focusing on the early life history of Atlantic cod ( Gadus morhua ) and cunner ( Tautogolabrus adspersus ) in the north-west Atlantic. In these species, settlement can occur over all bottom types, but habitat-specific differences in post-settlement mortality rates combined with size and priority at settlement effects on growth and survival determine recruitment and eventual year-class strength. These results and those from other temperate marine fish species along with work on tropical reef species emphasize the generality of habitat-based density-dependent mortality during the transition phase and its potential for population regulation. These results have implications for fisheries management and can be used to outline a procedure to assist managers in identifying and managing essential transitional habitats including the potential role of marine protected areas in habitat conservation.  相似文献   

4.
Many marine species have vastly different capacities for dispersal during larval, juvenile and adult life stages, and this has the potential to complicate the identification of population boundaries and the implementation of effective management strategies such as marine protected areas. Genetic studies of population structure and dispersal rarely disentangle these differences and usually provide only lifetime-averaged information that can be considered by managers. We address this limitation by combining age-specific autocorrelation analysis of microsatellite genotypes, hydrodynamic modelling and genetic simulations to reveal changes in the extent of dispersal during the lifetime of a marine fish. We focus on an exploited coral reef species, Lethrinus nebulosus, which has a circum-tropical distribution and is a key component of a multispecies fishery in northwestern Australia. Conventional population genetic analyses revealed extensive gene flow in this species over vast distances (up to 1,500 km). Yet, when realistic adult dispersal behaviours were modelled, they could not account for these observations, implying adult dispersal does not dominate gene flow. Instead, hydrodynamic modelling showed that larval L. nebulosus are likely to be transported hundreds of kilometres, easily accounting for the observed gene flow. Despite the vast scale of larval transport, juvenile L. nebulosus exhibited fine-scale genetic autocorrelation, which declined with age. This implies both larval cohesion and extremely limited juvenile dispersal prior to maturity. The multidisciplinary approach adopted in this study provides a uniquely comprehensive insight into spatial processes in this marine fish.  相似文献   

5.
Ecological patterns are created by processes acting over multiple spatial and temporal scales. By combining spatially explicit sampling with variance components models, the relative importance of spatial scale to overall variability can be determined. We used a spatially structured experimental design in the Mombasa Marine National Park in Kenya to quantify variation in coral recruitment across four spatial scales (~1–1,000 m) and to generate hypotheses about processes affecting recruitment and potential sources of post-settlement mortality during early life history. For the dominant recruiting corals (Pocillopora spp.), variation in recruitment on surfaces protected from fish grazing was greatest at the largest spatial scale examined (1,000 m). We hypothesize that recruitment on protected surfaces varies mainly with larval delivery due to different lagoonal circulation and water flow between sites. Conversely, variation on surfaces exposed to fishes was greatest at the smallest spatial scale (1 m). We hypothesize that recruitment on exposed surfaces mainly reflects local differences in the scale and intensity of fish grazing, which may obscure larval delivery patterns. Spatial variation in recruitment can affect many ecological processes and factors, including growth, survival to maturity, the distribution of habitat, and variation in species interaction strengths. This study demonstrates how spatially explicit sampling, followed by variance components modeling to partition variance across scales, can help to identify potential drivers of patterns at each relevant scale.  相似文献   

6.
Mortality that occurs during larval dispersal as a consequence of environmental, maternal, and genetic effects and their interactions can affect annual recruitment in fish populations. We studied larval lake sturgeon (Acipenser fulvescens) drift for two consecutive nights to examine whether larvae from different females exposed to the same environmental conditions during dispersal differed in relative levels of mortality. We estimated proportional contributions of females to larval collections and relative larval loss among females as larvae dispersed downstream between two sampling sites based on genetically determined parentage. Larval collections were composed of unequal proportions of offspring from different females that spawned at upstream and downstream locations (~0.8 km apart). Hourly dispersal patterns of larvae produced from females spawning at both locations were similar, with the largest number of larvae observed during 22:00–23:00 h. Estimated relative larval loss did not differ significantly among females as larvae were sampled at two sites approximately 0.15 and 1.5 km from the last section downstream of spawning locations. High inter- and intra-female variation in larval contributions and relative larval loss between nights may be a common feature of lake sturgeon and other migratory fish species, and likely is a source of inter-annual and intra-annual variation in fish recruitment.  相似文献   

7.
Marine protected areas (MPAs) are major tools to protect biodiversity and sustain fisheries. For species with a sedentary adult phase and a dispersive larval phase, the effectiveness of MPA networks for population persistence depends on connectivity through larval dispersal. However, connectivity patterns between MPAs remain largely unknown at large spatial scales. Here, we used a biophysical model to evaluate connectivity between MPAs in the Mediterranean Sea, a region of extremely rich biodiversity that is currently protected by a system of approximately a hundred MPAs. The model was parameterized according to the dispersal capacity of the dusky grouper Epinephelus marginatus, an archetypal conservation-dependent species, with high economic importance and emblematic in the Mediterranean. Using various connectivity metrics and graph theory, we showed that Mediterranean MPAs are far from constituting a true, well-connected network. On average, each MPA was directly connected to four others and MPAs were clustered into several groups. Two MPAs (one in the Balearic Islands and one in Sardinia) emerged as crucial nodes for ensuring multi-generational connectivity. The high heterogeneity of MPA distribution, with low density in the South-Eastern Mediterranean, coupled with a mean dispersal distance of 120 km, leaves about 20% of the continental shelf without any larval supply. This low connectivity, here demonstrated for a major Mediterranean species, poses new challenges for the creation of a future Mediterranean network of well-connected MPAs providing recruitment to the whole continental shelf. This issue is even more critical given that the expected reduction of pelagic larval duration following sea temperature rise will likely decrease connectivity even more.  相似文献   

8.
Recruitment is an important process in regulating many marine benthic communities and many studies have examined factors controlling the dispersal and distribution of larval immigrants. However, benthic species also have early post-settlement life-stages that are dramatically different from adult and larval stages. Predation on these stages potentially impacts measured recruitment and the benthic populations and communities that ultimately develop.We examined the consequences of post-settlement predation on 1-day-old to 1-month-old recruits of sessile invertebrates at two field sites in southern New England. One site (Breakwater) was in a protected area with few predators and the other (Pine Island) was <1 km away in an open coast area with three different predator guilds: small and large invertebrates and fish. The Breakwater site had been dominated for >10 years by colonial and solitary ascidians. These species were absent from the Pine Island site which was dominated by bryozoans. Our goal was to examine whether post-settlement predation influenced the development and subsequent structure of the epifaunal community.Here we examine long-term changes in community development resulting from post-settlement predation, and contrast these results to those of earlier experiments examining the reductions in observed recruitment by post-settlement predation. Our first long-term experiment examined natural community development at the two sites and whether transplanted communities changed when exposed to the different levels of predation at these sites. The communities that developed at both sites were consistently different from each other and similar to resident communities at their respective sites. On panels transplanted from the Breakwater to Pine Island, solitary ascidians and the colonial ascidian, Botryllus schlosseri, suffered high mortalities on both caged and uncaged treatments, indicative of predation by small predators that could enter cages. Some solitary ascidians did survive inside cages and the colonial ascidian, Botrylloides violaceus, became dominant on all transplanted treatments. On panels transplanted from Pine Island to the Breakwater, ascidians invaded and dominated all treatments except those that were originally caged at Pine Island.In the second long-term experiment, natural communities were allowed to develop on panels exposed at the Breakwater for 1, 2, 3, and 4 weeks. Each set was transplanted to three treatments at Pine Island: open uncaged pilings, caged pilings to exclude fish and large invertebrates, and racks suspended above the bottom to exclude all predators. When 1-week-old communities were transplanted, after 2-3 weeks only bryozoans were found on the open and caged pilings, while colonial ascidians dominated the suspended rack treatment. When older 2-week-old communities were transplanted, colonial ascidians also became dominant in the caged piling treatment and when 3- and 4-week-old communities were transplanted colonial ascidians dominated all three treatments. Solitary ascidians were never abundant on open pilings exposed to fish and large benthic invertebrate predators.Post-settlement predator-prey interactions involved newly settled and juvenile life-stages of a variety of prey species and many invertebrate and vertebrate predator species. The effects of these interactions on recruitment did result in differences in the development and eventual species composition of the communities, even though predators had little if any effect on the adults of the prey species.  相似文献   

9.
Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km(2) study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders.  相似文献   

10.
The connectivity among marine populations is determined by the dispersal capabilities of adults as well as their eggs and larvae. Dispersal distances and directions have a profound effect on gene flow and genetic differentiation within species. Genetic homogeneity over large areas is a common feature of coral reef fishes and can reflect high dispersal capability resulting in high levels of gene flow. If fish larvae return to their parental reef, gene flow would be restricted and genetic differentiation could occur. Larabicus quadrilineatus (Labridae) is considered as an endemic fish species of the Red Sea and Gulf of Aden. The juveniles of this species are cleaner fish that feed on ectoparasites of other fishes. Here, we investigated the genetic population structure and gene flow in L. quadrilineatus among five locations in the Red Sea to infer connectivity among them. To estimate genetic diversity, we analysed 369 bp of 237 mitochondrial DNA control region sequences. Haplotype and nucleotide diversities were higher in the southern than in the northern Red Sea. Analysis of molecular variance (amova) detected the highest significant genetic variation between northern and central/southern populations (Phi(CT) = 0.01; P < 0.001). Migration analysis revealed a several fold higher northward than southward migration, which could be explained by oceanographic conditions and spawning season. Even though the Phi(ST) value of 0.01 is rather low and implies a long larval dispersal distance, estimates based on the isolation-by-distance model show a very low mean larval dispersal distance (0.44-5.1 km) compared to other studies. In order to enable a sustainable ornamental fishery on the fourline wrasse, the results of this study suggest that populations in the northern and southern Red Sea should be managed separately as two different stocks. The rather low larval dispersal distance of about 5 km needs to be considered in the design of marine protected areas to enable connectivity and self-seeding.  相似文献   

11.
Seafloor integrity is threatened by disturbances owing to human activities. The capacity of the system to recover from disturbances, as well as maintain resilience and function, depends on dispersal. In soft-sediment systems, dispersal continues after larval settlement, but there are very few measurements of how far the post-settlers disperse in nature. Spatial scales of post-settlement dispersal are, however, likely to be similar to pelagic larval dispersal because of continued, frequent, small-scale dispersal over longer periods. The consequences of this dispersal may be more important for the maintenance of biodiversity and metacommunity dynamics than is pelagic larval dispersal, because of the greater size and competency of the dispersers. We argue that an increased empirical understanding of post-settlement dispersal processes is key for predicting how benthic communities will respond to local disturbances and shrinking regional species pools, with implications for monitoring, managing and conserving biodiversity.  相似文献   

12.
Connectivity is crucial for the persistence and resilience of marine species, the establishment of networks of marine protected areas and the delineation of fishery management units. In the marine environment, understanding connectivity is still a major challenge, due to the technical difficulties of tracking larvae. Recently, parentage analysis has provided a means to address this question effectively. To be effective, this method requires limited adult movement and extensive sampling of parents, which is often not possible for marine species. An alternative approach that is less sensitive to constraints in parental movement and sampling could be the reconstruction of sibships. Here, we directly measure connectivity and larval dispersal in a temperate marine ecosystem through both analytical approaches. We use data from 178 single nucleotide polymorphism markers to perform parentage and sibship reconstruction of the black-faced blenny (Tripterygion delaisi) from an open coastline in the Mediterranean Sea. Parentage analysis revealed a decrease in dispersal success in the focal area over 1 km distance and approximately 6.5% of the juveniles were identified as self-recruits. Sibship reconstruction analysis found that, in general, full siblings did not recruit together to the same location, and that the largest distance between recruitment locations was much higher (11.5 km) than found for parent–offspring pairs (1.2 km). Direct measurements of dispersal are essential to understanding connectivity patterns in different marine habitats, and show the degree of self-replenishment and sustainability of populations of marine organisms. We demonstrate that sibship reconstruction allows direct measurements of dispersal and family structure in marine species while being more easily applied in those species for which the collection of the parental population is difficult or unfeasible.  相似文献   

13.
At a large‐scale, the lipid content in the muscle of Pagellus acarne and Pagellus erythrinus was higher in the Gulf of Lions than in the Catalan Sea. Furthermore, there was a significant effect of depth on lipid content of Mullus barbatus, Mullus surmuletus and P. acarne , fishes with the highest lipid levels inhabiting the shallowest parts of the Gulf of Lions (all three species) and the Catalan Sea (last two species). At a small‐scale, the study revealed differences in the condition of Diplodus sargus sargus between protected (Natural Park of Cap de Creus) and the unprotected habitats. Total lipid content in the muscle of D. s. sargus during spawning was higher within the protected area than in adjacent unprotected rocky areas. Because lipids play a critical role in the health, growth and reproduction of fishes, results from this study support the relative importance of some habitats (shallow v . deeper parts of the continental shelf, the Gulf of Lions v . the Catalan Sea, and the protected bottom areas of the Natural Park of Cap de Creus v . the unprotected bottom areas) for the productivity of different Mediterranean fishes.  相似文献   

14.
Recruitment of the temperate reef fish Coris julis was studied across the Azores Archipelago (central North Atlantic), over four consecutive recruitment seasons and at three spatial scales: between islands (separated by 100s of km), sites within islands (separated by 10s of km) and transects within sites (separated by 10s of m). At the largest scale ( i.e . between islands) spatial recruitment patterns were highly variable, suggesting the influence of stochastic processes. Recruitment was spatially consistent within islands, even though magnitude was unpredictable between years, indicating that processes at meso-scales are probably more deterministic. Recruits settled randomly at the transect scale, probably reflecting habitat homogeneity. It was proposed that large and island-scale patterns reflect larval availability, driven by physical and biological processes occurring in the plankton. No evidence was found for a density-dependent relationship between newly settled and 2 week settled C. julis nor between cumulative recruitment and young-of-the-year. It appears that adult density is limited by larval supply (pre-settlement regulation) at low recruitment sites, and determined by post-settlement, density-dependent processes at high recruitment sites. This work is one of few to investigate multiple spatial and temporal scales of recruitment for a coastal fish species inhabiting isolated, temperate oceanic islands and hence, provides a novel comparison to the many studies of recruitment on coral reefs and other, more connected systems.  相似文献   

15.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   

16.
Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle‐tracking model coupled to a 3D‐hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability in larval transport over the period 1995–2011. Then, using a subset of representative years (2003–2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year‐to‐year recruitment variability is explained at a regional scale and that a 9‐year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (?9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (?58%) and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention ?4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management.  相似文献   

17.
A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50–84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.  相似文献   

18.
The correct identification of fish egg and larval stages is crucial for inferring spawning areas and subsequent dispersal routes for marine fishes. The authors use species-specific mtDNA polymerase chain reaction to estimate proportions of Merluccius capensis and Merluccius paradoxus eggs and larvae and to elucidate early life stage distribution patterns in the southern Benguela system.  相似文献   

19.
Marine biologists have gone through a paradigm shift, from the assumption that marine populations are largely ‘open’ owing to extensive larval dispersal to the realization that marine dispersal is ‘more restricted than previously thought’. Yet, population genetic studies often reveal low levels of genetic structure across large geographic areas. On the other side, more direct approaches such as mark‐recapture provide evidence of localized dispersal. To what extent can direct and indirect studies of marine dispersal be reconciled? One approach consists in applying genetic methods that have been validated with direct estimates of dispersal. Here, we use such an approach—genetic isolation by distance between individuals in continuous populations—to estimate the spatial scale of dispersal in five species of coral reef fish presenting low levels of genetic structure across the Caribbean. Individuals were sampled continuously along a 220‐km transect following the Mesoamerican Barrier Reef, population densities were estimated from surveys covering 17 200 m2 of reef, and samples were genotyped at a total of 58 microsatellite loci. A small but positive isolation‐by‐distance slope was observed in the five species, providing mean parent‐offspring dispersal estimates ranging between 7 and 42 km (CI 1–113 km) and suggesting that there might be a correlation between minimum/maximum pelagic larval duration and dispersal in coral reef fishes. Coalescent‐based simulations indicate that these results are robust to a variety of dispersal distributions and sampling designs. We conclude that low levels of genetic structure across large geographic areas are not necessarily indicative of extensive dispersal at ecological timescales.  相似文献   

20.
Many marine organisms can be transported hundreds of kilometres during their pelagic larval stage, yet little is known about spatial and temporal patterns of larval dispersal. Although traditional population‐genetic tools can be applied to infer movement of larvae on an evolutionary timescale, large effective population sizes and high rates of gene flow present serious challenges to documenting dispersal patterns over shorter, ecologically relevant, timescales. Here, we address these challenges by combining direct parentage analysis and indirect genetic analyses over a 4‐year period to document spatial and temporal patterns of larval dispersal in a common coral‐reef fish: the bicolour damselfish (Stegastes partitus). At four island locations surrounding Exuma Sound, Bahamas, including a long‐established marine reserve, we collected 3278 individuals and genotyped them at 10 microsatellite loci. Using Bayesian parentage analysis, we identified eight parent‐offspring pairs, thereby directly documenting dispersal distances ranging from 0 km (i.e., self‐recruitment) to 129 km (i.e., larval connectivity). Despite documenting substantial dispersal and gene flow between islands, we observed more self‐recruitment events than expected if the larvae were drawn from a common, well‐mixed pool (i.e., a completely open population). Additionally, we detected both spatial and temporal variation in signatures of sweepstakes and Wahlund effects. The high variance in reproductive success (i.e., ‘sweepstakes’) we observed may be influenced by seasonal mesoscale gyres present in the Exuma Sound, which play a prominent role in shaping local oceanographic patterns. This study documents the complex nature of larval dispersal in a coral‐reef fish, and highlights the importance of sampling multiple cohorts and coupling both direct and indirect genetic methods in order disentangle patterns of dispersal, gene flow and variable reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号