首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Cancer stem cells have been identified as the growth root for various malignant tumours and are thought to be responsible for cancer recurrence following treatment. MATERIALS AND METHODS: Here, a predictive mathematical model for the cancer stem cell hypothesis is used to understand tumour responses to chemotherapeutic drugs and judge the efficacy of treatments in arresting tumour growth. The impact of varying drug efficacies on different abnormal cell populations is investigated through the kinetics associated with their decline in response to therapy. RESULTS AND CONCLUSIONS: The model predicts the clinically established 'dandelion phenomenon' and suggests that the best response to chemotherapy occurs when a drug targets abnormal stem cells. We compare continuous and periodic drug infusion. For the latter, we examine the relative importance of the drug cell-kill rate and the mean time between successive therapies, to identify the key attributes for successful treatment.  相似文献   

2.
Mathematical model for the cancer stem cell hypothesis   总被引:7,自引:0,他引:7  
Recent research on the origin of brain cancer has implicated a subpopulation of self-renewing brain cancer stem cells for malignant tumour growth. Various genes that regulate self-renewal in normal stem cells are also found in cancer stem cells. This implies that cancers can occur because of mutations in normal stem cells and early progenitor cells. A predictive mathematical model based on the cell compartment method is presented here to pose and validate non-intuitive scenarios proposed through the neural cancer stem cell hypothesis. The growths of abnormal (stem and early progenitor) cells from their normal counterparts are ascribed with separate mutation probabilities. Stem cell mutations are found to be more significant for the development of cancer than a similar mutation in the early progenitor cells. The model also predicts that, as previously hypothesized, repeated insult to mature cells increases the formation of abnormal progeny, and hence the risk of cancer.  相似文献   

3.
A kinetic model has been presented to explain the growth of microorganism on solid hydrocarbons. The model is based on the assumption that metabolite produced by the growing cells helps the dissolution of the solid substrate in the aqueous medium. The linear behavior of the growth curve predicted by the model is verified experimentally.  相似文献   

4.
《Mathematical biosciences》1986,81(2):229-244
A one-dimensional model of tumor tissue growth is presented in which the source of mitotic inhibitor is nonuniformly distributed within the tissue (in contrast to many earlier models). As a result, stable and unstable regimes of growth become significantly modified from the uniform-source case, indicating that the model, schematic though it is, is very sensitive to the type of source term assumed, and this has implications for experimental and theoretical comparisons in more realistic geometries.  相似文献   

5.
The role of cartilage canals is to transport nutrients and biological factors that cause the appearance of the secondary ossification centre (SOC). The SOC appears in the centre of the epiphysis of long bones. The canal development is a complex interaction between mechanical and biological factors that guide its expansion into the centre of the epiphysis. This article introduces the ‘Hypothesis on the growth of cartilage canals’. Here, we have considered that the development of these canals is an essential event for the appearance of SOC. Moreover, it is also considered to be important for the transport of molecular factors (RUNX2 and MMP9) at the ends of such canals. Once the canals are merged in the centre of the epiphysis, these factors are released causing hypertrophy of adjacent cells. This RUNX2 and MMP9 release occurs due to the action of mechanical loads that supports the epiphysis. In order to test this hypothesis, we use a hybrid approach using the finite element method to simulate the mechanical stresses present in the epiphysis and the cellular automata to simulate the expansion of the canals and the hypertrophy factors pathway. By using this hybrid approach, we have obtained as a result the spatial–temporal patterns for the growth of cartilage canals and hypertrophy factors within the epiphysis. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model may be used as a methodological basis to present a complete mathematical model of the processes involved in epiphyseal development.  相似文献   

6.
This work describes a mathematical model of growth based on the kinetics of the cell cycle. A traditional model of the cell cycle has been used, with the addition of a resting (G0) state from which cells could reenter the reproductive cycle. The model assumes that a growth regulatory substance regulates the transition of cells to and from the resting state. Other transitions between the phases of the cycle were modeled as a first order process. Cell loss is an important feature of growth kinetics, and has been represented by a general but tractable mathematical form. The resulting model forms a system of ordinary nonlinear differential equations. Analytic methods are employed first in the study of this system. Simplifying assumptions regarding cell loss give rise to special cases for which equilibrium solutions can be found. One special case, which assumes first order loss from all cell cycle phases at equal rates, is presented here. For small time values, approximations corresponding to exponential growth were developed. The equations describing an intrinsic growth rate were derived. Simulation methods were used to further characterize the behavior of this model. Parameter values were chosen based on animal tumor cell cycle kinetic data, resulting in a set of 45 model simulations. Several tumor treatment protocols were simulated which illustrated the importance of the intrinsic growth rate and cell loss concepts. Although the qualitative behavior regarding absolute and relative growth is reasonable, this model awaits data for model fitting, parameter estimation, or revision of the equations.  相似文献   

7.
The finding that only a sub-fraction of tumor cells, so called Cancer Stem Cells (CSC), is endowed with the capacity to initiate new tumors has important consequences for fundamental as well as clinical cancer research. Previously we established by computational modeling techniques that CSC driven tumor growth instigates infiltrative behavior, and perhaps most interesting, stimulates tumor cell heterogeneity. An important question that remains is to what extend CSC functions are intrinsically regulated or whether this capacity is orchestrated by the microenvironment, i.e. a putative CSC niche. Here we investigate how extrinsic regulation of CSC properties affects the characteristics of malignancies. We find that highly invasive growth in tumors dependent on a small subset of cells is not restricted to CSC-driven tumors, but is also observed in tumors where the CSC capacity of tumor cells is completely defined by the microenvironment. Importantly, also the high level of heterogeneity that was observed for CSC-driven tumors is preserved and partially even increased in malignancies with a microenvironmentally orchestrated CSC population. This indicates that invasive growth and high heterogeneity are fundamental properties of tumors fueled by a small population of tumor cells.  相似文献   

8.
Recent research in cancer progression and treatment indicates that many forms of cancer arise from the development of a small subpopulation of abnormal cancer stem cells (CSCs) that promote cancer growth and spread. Many potential treatments preferentially interact with cells at certain stages of the cell cycle by either selective killing or halting the cell cycle, such as intense, nanosecond-duration pulsed electric fields (nsPEFs). Simple mathematical models of unfed cancer cell populations at the plateau of their growth characteristics may estimate the long-term consequences of these treatments on proliferating and quiescent cell populations. Applying such a model with no transition from the quiescent to proliferating state shows that it is possible for the proliferating cell population to fall below 1 if the quiescent cell population obtains a sufficient competitive advantage with respect to nutrient consumption and/or survival rate. Introducing small, realistic transition rates did not appreciably alter short-term or long-term population behaviour, indicating that the predicted small cell population behaviour (< 1 cell) is not an artefact of the simpler model. Experimental observations of nsPEF-induced effects on the cell cycle suggest that such a model may serve as a first step in assessing the viability of a given cancer treatment in vitro prior to clinical application.  相似文献   

9.
10.
A mathematical model of cancer cell growth and response to treatment with the experimental antimitotic agent curacin A is presented. Rate parameters for the untreated growth of MCF-7/LY2 breast cancer and A2780 ovarian cell lines are determined from in vitro growth studies. Subsequent growth studies following treatments with 2.5, 25 and 50 nanomolar (nM), concentrations of curacin A are used to determine effects on the cell cycle and cell viability. The model's system of ordinary differential equations yields an approximate analytical solution which predicts the minimum concentration necessary to prevent growth. The model shows that cell growth is arrested when the apoptotic rate is greater than the mitotic rate and that the S-phase transition rate acts to amplify this effect. Analysis of the data suggests that curacin A is rapidly absorbed into both cell lines causing an increase in the S-phase transition and a decrease in the M-phase transition. The model also indicates that the rate of apoptosis remains virtually constant for MCF-7/LY2 while that of A2780 increases 38% at 2.5 nM and 59% at 50 nM as compared to the untreated apoptotic rate.  相似文献   

11.
Oncolytic viruses preferentially infect and replicate in cancerous cells, leading to elimination of tumour populations, while sparing most healthy cells. Here, we study the cell cycle-specific activity of viruses such as vesicular stomatitis virus (VSV). In spite of its capacity as a robust cytolytic agent, VSV cannot effectively attack certain tumour cell types during the quiescent, or resting, phase of the cell cycle. In an effort to understand the interplay between the time course of the cell cycle and the specificity of VSV, we develop a mathematical model for cycle-specific virus therapeutics. We incorporate the minimum biologically required time spent in the non-quiescent cell cycle phases using systems of differential equations with incorporated time delays. Through analysis and simulation of the model, we describe how varying the minimum cycling time and the parameters that govern viral dynamics affect the stability of the cancer-free equilibrium, which represents therapeutic success.  相似文献   

12.
13.
A mathematical model for describing the cancer growth dynamics in response to anticancer agents administration in xenograft models is discussed. The model consists of a system of ordinary differential equations involving five parameters (three for describing the untreated growth and two for describing the drug action). Tumor growth in untreated animals is modelled by an exponential growth followed by a linear growth. In treated animals, tumor growth rate is decreased by an additional factor proportional to both drug concentration and proliferating cells. The mathematical analysis conducted in this paper highlights several interesting properties of this tumor growth model. It suggests also effective strategies to design in vivo experiments in animals with potential saving of time and resources. For example, the drug concentration threshold for the tumor eradication, the delay between drug administration and tumor regression, and a time index that measures the efficacy of a treatment are derived and discussed. The model has already been employed in several drug discovery projects. Its application on a data set coming from one of these projects is discussed in this paper.  相似文献   

14.
Cancer stem cells (CSCs) are tumoral cells which have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. In the last 10 years the pathological meaning and the existence of CSCs have been matter of discussion and a large number of articles have been published about the role that these cells play in the development and maintenance of the tumors. Head and neck squamous-cell carcinoma (HNSCC) is the sixth most common cancer worldwide: early diagnosis of high-risk premalignant lesions are high priorities for reducing deaths due to head and neck cancer. In the last years the CSCs hypothesis has been faced also for head and neck cancer, with the aim of a better comprehension of the tumor biology and an early diagnosis. The evidence that the development of a tumor comes from a small number of cells with stem-like characteristic, could bring too to the identification of therapies against these cellular target, fundamental for maintenance and progression of the lesion. Here, a literature review has been reported about the detection of supposed CSCs in head and neck cancer.  相似文献   

15.
16.
The phenomenon of receptor-receptor interactions was hypothesized about 20 years ago. It has been demonstrated by now that receptor-receptor interactions between G-protein coupled receptors (GPCRs) occur at plasma membrane level and result in the reciprocal modulation of their binding characteristics (i.e., cooperativity). One of the most important feature of this phenomenon is the concept of cluster of receptors, or receptor mosaic (RM). However, no proper mathematical approach has still been available to characterize RMs as far as their receptor composition, receptor topography and order of receptor activation inside the RM. This paper tries to fill the gap. A simple mathematical approach to the cooperativity in RMs formed by dimers of identical receptors and/or by iso-receptors is proposed. To this aim the so-called "symmetry rule" has been considered. This approach allows to describe by means of a simple energy function the effects of receptor composition (number of dimers), spatial organisation (respective location of the dimers) and order of activation (order according to which the single receptors are ligated) on the integrative cooperativity (index) of the RMs.  相似文献   

17.
We deal with the following question: Can the consumption of contaminated bush meat, the funeral practices and the environmental contamination explain the recurrence and persistence of Ebola virus disease outbreaks in Africa? We develop an SIR-type model which, incorporates both the direct and indirect transmissions in such a manner that there is a provision of Ebola viruses. We prove that the full model has one (endemic) equilibrium which is locally asymptotically stable whereas, it is globally asymptotically stable in the absence of the Ebola virus shedding in the environment. For the sub-model without the provision of Ebola viruses, the disease dies out or stabilizes globally at an endemic equilibrium. At the endemic level, the number of infectious is larger for the full model than for the sub-model without provision of Ebola viruses. We design a nonstandard finite difference scheme, which preserves the dynamics of the model. Numerical simulations are provided.  相似文献   

18.
This paper introduces a 'hypothesis about the growth pattern of the secondary ossification centre (SOC)', whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular factors are released (primarily Runx2 and MMP9) spreading and causing hypertrophy of adjacent cells. In addition, there are two important molecular factors in the epiphysis: PTHrP and Ihh. The first one inhibits chondrocyte hypertrophy and the second helps the cell proliferation. Between these factors, there is negative feedback, which generates a highly localised and stable pattern over time. From a mathematical point of view, this pattern is similar to the patterns of Turing. The spread of Runx2 hypertrophies the cells from the centre to the periphery of the epiphysis until found with high levels of PTHrP to inhibit hypertrophy. This mechanism produces the epiphyseal bone-plate. Moreover, the hypertrophy is inhibited when the cells sense low shear stress and high pressure levels that maintain the articular cartilage structure. To test this hypothesis, we solve a system of coupled partial differential equations using the finite element method and we have obtained spatio-temporal patterns of the growth process of the SOC. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model can be used as a methodological basis to present a complete mathematical model of the whole epiphyseal development.  相似文献   

19.
This paper introduces a ‘hypothesis about the growth pattern of the secondary ossification centre (SOC)’, whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular factors are released (primarily Runx2 and MMP9) spreading and causing hypertrophy of adjacent cells. In addition, there are two important molecular factors in the epiphysis: PTHrP and Ihh. The first one inhibits chondrocyte hypertrophy and the second helps the cell proliferation. Between these factors, there is negative feedback, which generates a highly localised and stable pattern over time. From a mathematical point of view, this pattern is similar to the patterns of Turing. The spread of Runx2 hypertrophies the cells from the centre to the periphery of the epiphysis until found with high levels of PTHrP to inhibit hypertrophy. This mechanism produces the epiphyseal bone-plate. Moreover, the hypertrophy is inhibited when the cells sense low shear stress and high pressure levels that maintain the articular cartilage structure. To test this hypothesis, we solve a system of coupled partial differential equations using the finite element method and we have obtained spatio-temporal patterns of the growth process of the SOC. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model can be used as a methodological basis to present a complete mathematical model of the whole epiphyseal development.  相似文献   

20.
Background

Mathematical modeling of biological processes is widely used to enhance quantitative understanding of bio-medical phenomena. This quantitative knowledge can be applied in both clinical and experimental settings. Recently, many investigators began studying mathematical models of tumor response to radiation therapy. We developed a simple mathematical model to simulate the growth of tumor volume and its response to a single fraction of high dose irradiation. The modelling study may provide clinicians important insights on radiation therapy strategies through identification of biological factors significantly influencing the treatment effectiveness.

Methods

We made several key assumptions of the model. Tumor volume is composed of proliferating (or dividing) cancer cells and non-dividing (or dead) cells. Tumor growth rate (or tumor volume doubling time) is proportional to the ratio of the volumes of tumor vasculature and the tumor. The vascular volume grows slower than the tumor by introducing the vascular growth retardation factor, θ. Upon irradiation, the proliferating cells gradually die over a fixed time period after irradiation. Dead cells are cleared away with cell clearance time. The model was applied to simulate pre-treatment growth and post-treatment radiation response of rat rhabdomyosarcoma tumors and metastatic brain tumors of five patients who were treated with Gamma Knife stereotactic radiosurgery (GKSRS).

Results

By selecting appropriate model parameters, we showed the temporal variation of the tumors for both the rat experiment and the clinical GKSRS cases could be easily replicated by the simple model. Additionally, the application of our model to the GKSRS cases showed that the α-value, which is an indicator of radiation sensitivity in the LQ model, and the value of θ could be predictors of the post-treatment volume change.

Conclusions

The proposed model was successful in representing both the animal experimental data and the clinically observed tumor volume changes. We showed that the model can be used to find the potential biological parameters, which may be able to predict the treatment outcome. However, there is a large statistical uncertainty of the result due to the small sample size. Therefore, a future clinical study with a larger number of patients is needed to confirm the finding.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号