首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu HY  Bao AM  Zhou JN  Liu RY 《生理学报》2005,57(3):389-394
目前有关月经周期对睡眠影响的研究结果并不一致,而对月经周期中昼夜睡眠-觉醒及静息-活动节律尚缺乏系统性的研究.本研究旨在观察正常育龄期女性月经周期中睡眠-觉醒及静息-活动昼夜节律的变化.我们采用静息-活动监测仪(actigraphy)和睡眠日志,调查了12个自然生活状态下健康育龄期妇女在月经周期不同阶段,即行经期、围排卵期、黄体早期及黄体晚期中睡眠与活动节律的变化.结果显示,睡眠-觉醒节律参数在四期之间无统计学显著差异;而静息-活动节律方面,所有受试女性静息-活动节律的平均日周期长度为(24.01±0.29)h,并且四期之间无显著性差异.行经期日间稳定系数(interdaily stability,IS)比黄体早期显著增加(P<0.05).黄体早期日间活动开始时间明显较黄体晚期提前(P<0.05);黄体早期的活动峰值时相比围排卵期显著提前(P<0.05).月经周期可以影响静息-活动昼夜节律时相.而总体静息-活动数量与质量未发生显著变化;健康育龄期妇女在月经周期的各阶段中睡眠-觉醒节律亦无明显变异.  相似文献   

2.
This study assessed daily rest-activity patterns in euthymic, medication-naïve bipolar phenotype individuals. The Mood Disorder Questionnaire was used to identify 19 bipolar phenotype individuals and 21 controls. Participants wore an Actiwatch-L for 2 weeks to assess their sleep behaviour and circadian rest-activity rhythmicity. Bipolar phenotype individuals had increased movement during sleep, as assessed by the fragmentation index, greater activity levels during their least active 5?h (2 am–7 am), and lower circadian relative amplitude compared to controls. Higher activity levels during sleep affecting circadian amplitude in young adults with the bipolar phenotype may be associated with vulnerability for developing mood disorder.  相似文献   

3.
Masking effects are a common feature of daily rhythmicity in invertebrates; and, particularly with respect to activity/rest cycles in arthropods and mollusks, there are numerous examples of masking in response to external environmental stimuli. Internal masking, in which endogenous processes modulate circadian patterns, has also been documented in a few species. In general, however, because of the absence of appropriate experimental investigations on masking, the functional significance (in an ecological sense) of masking effects is not understood.  相似文献   

4.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103-128, 2000)  相似文献   

5.
Over the past 40 years, actigraphy has been used to study rest-activity patterns in circadian rhythm and sleep research. Furthermore, considering its simplicity of use, there is a growing interest in the analysis of large population-based samples, using actigraphy. Here, we introduce pyActigraphy, a comprehensive toolbox for data visualization and analysis including multiple sleep detection algorithms and rest-activity rhythm variables. This open-source python package implements methods to read multiple data formats, quantify various properties of rest-activity rhythms, visualize sleep agendas, automatically detect rest periods and perform more advanced signal processing analyses. The development of this package aims to pave the way towards the establishment of a comprehensive open-source software suite, supported by a community of both developers and researchers, that would provide all the necessary tools for in-depth and large scale actigraphy data analyses.  相似文献   

6.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103–128, 2000)  相似文献   

7.
The disruption of the temperature circadian rhythm has been associated with cancer progression, while its amplification resulted in cancer inhibition in experimental tumor models. The current study investigated the relevance of skin surface temperature rhythms as biomarkers of the Circadian Timing System (CTS) in order to optimize chronotherapy timing in individual cancer patients. Baseline skin surface temperature at four sites and wrist accelerations were measured every minute for 4?days in 16 patients with metastatic gastro-intestinal cancer before chronotherapy administration. Temperature and rest-activity were recorded, respectively, with wireless skin surface temperature patches (Respironics, Phillips) and an actigraph (Ambulatory Monitoring). Both variables were further monitored in 10 of these patients during and after a 4-day course of a fixed chronotherapy protocol. Collected at baseline, during and after therapy longitudinal data sets were processed using Fast Fourier Transform Cosinor and Linear Discriminant Analyses methods. A circadian rhythm was statistically validated with a period of 24?h (p?<?0.05) for 49/61 temperature time series (80.3%), and 15/16 rest-activity patterns (93.7%) at baseline. However, individual circadian amplitudes varied from 0.04?°C to 2.86?°C for skin surface temperature (median, 0.72?°C), and from 16.6 to 146.1?acc/min for rest-activity (median, 88.9?acc/min). Thirty-nine pairs of baseline temperature and rest-activity time series (75%) were correlated (r?>?|0.7|; p?<?0.05). Individual circadian acrophases at baseline were scattered from 15:18 to 6:05 for skin surface temperature, and from 12:19 to 15:18 for rest-activity, with respective median values of 01:10 (25–75% quartiles, 22:35–3:07) and 14:12 (13:14–14:31). The circadian patterns in skin surface temperature and rest-activity persisted or were amplified during and after fixed chronotherapy delivery for 5/10 patients. In contrast, transient or sustained disruption of these biomarkers was found for the five other patients, as indicated by the lack of any statistically significant dominant period in the circadian range. No consistent correlation (r?<?|0.7|, p?≥?0.05) was found between paired rest-activity and temperature time series during fixed chronotherapy delivery. In conclusion, large inter-patient differences in circadian amplitudes and acrophases of skin surface temperature were demonstrated for the first time in cancer patients, despite rather similar rest-activity acrophases. The patient-dependent coupling between both CTS biomarkers, and its possible alteration on a fixed chronotherapy protocol, support the concept of personalized cancer chronotherapy.  相似文献   

8.
The use of actimetry to assess changes to the rest-activity cycle   总被引:3,自引:0,他引:3  
The endogenous circadian oscillator (the body clock) is slow to adjust to altered rest-activity patterns. As a result, several negative consequences arise during night work and after time-zone transitions. The process of adjustment can be assessed by measurements of the sleep electroencephalogram (EEG), core temperature or melatonin secretion, for example, but these techniques are very difficult to apply in field studies, and make very great demands upon both experimenters and subjects. We have sought to establish if the activity record, measured conveniently and unobtrusively by a monitor attached to the wrist, can be treated in ways that enable estimates to be made of the disruption caused by changes to the rest-activity cycle, and the process of adjustment to them. In Part A, we describe the calculation and assessment of a series of “activity indices” that measure the overall activity pattern, activity when out of bed or in bed, or the activity in the hours adjacent to going to bed or getting up. The value of the indices was assessed by measuring changes to them in subjects undergoing night work or undergoing time-zone transitions. In both cases, there is a large body of literature describing the changes that would be expected. First, night workers (working 2 to 4 successive night shifts) were investigated during rest days and night shifts. The indices indicated that night work was associated with lower activity when the subjects were out of bed and higher activity when in bed. Some indices also measured when subjects took an afternoon nap before starting a series of night shifts and gave information about the process of adjustment to night work and recovery from it. Second, in studies from travelers crossing six or more time zones to the east or west, the indices indicated that there were changes to the rest-activity cycle immediately after the flights, both in its overall profile and when activity of the subjects in bed or out of bed was considered, and that adjustment took place on subsequent days. By focusing on those indices describing the activity records during the last hour in bed (LHIB) and the first hour out of bed (FHOB), some evidence was found for incomplete adjustment of the body clock, and for differences between westward and eastward flights. In Part B, the battery of indices are applied to the activity records of long-haul pilots, whose activity patterns showed a mixture of effects due to night work and time-zone transitions. Actimetry was performed during the flights themselves and during the layover days (which were either rest or work days). The indices indicated that all pilots had disrupted rest-activity cycles caused by night flights, and that there were added problems for those who had also undergone time-zone transitions. Rest days were valuable for normalizing the activity profile. For those pilots who flew to the west, adjustment was by delay, though not all aspects of the rest-activity cycle adjusted immediately; for those who flew to the east, some attempted to advance their rest-activity cycle while others maintained home-based activity profiles. The indices indicated that the activity profile was disrupted more in those pilots who attempted to advance their rest-activity cycle. We conclude that objective estimates of the disruption caused to the rest-activity cycle and the circadian system can be obtained by suitable analysis of the activity record.  相似文献   

9.
Sleep is regulated by independent yet interacting circadian and homeostatic processes. The present study used a novel approach to study sleep homeostasis in the absence of circadian influences by exposing Siberian hamsters to a simple phase delay of the photocycle to make them arrhythmic. Because these hamsters lacked any circadian organization, their sleep homeostasis could be studied in the absence of circadian interactions. Control animals retained circadian rhythmicity after the phase shift and re-entrained to the phase-shifted photocycle. These animals displayed robust daily sleep-wake rhythms with consolidated sleep during the light phase beginning about 1 h after light onset. This marked sleep-wake pattern was circadian in that it persisted in constant darkness. The distribution of sleep in the arrhythmic hamsters over 24 h was similar to that in the light phase of rhythmic animals. Therefore, daily sleep amounts were higher in arrhythmic animals compared with rhythmic ones. During 2- and 6-h sleep deprivations (SD), it was more difficult to keep arrhythmic hamsters awake than it was for rhythmic hamsters. Because the arrhythmic animals obtained more non-rapid eye movement sleep (NREMS) during the SD, they showed a diminished compensatory response in NREMS EEG slow-wave activity during recovery sleep. When amounts of sleep during the SD were taken into account, there were no differences in sleep homeostasis between experimental and control hamsters. Thus loss of circadian control did not alter the homeostatic response to SD. This supports the view that circadian and homeostatic influences on sleep regulation are independent processes.  相似文献   

10.
Rest-activity patterns provide an indication of circadian rhythmicity in the free-living setting. We aimed to describe the distributions of rest-activity patterns in a sample of adults and children across demographic variables. A sample of adults (N = 590) and children (N = 58) wore an actigraph on their nondominant wrist for 7 days and nights. We generated rest-activity patterns from cosinor analysis (MESOR, acrophase and magnitude) and nonparametric circadian rhythm analysis (IS: interdaily stability; IV: intradaily variability; L5: least active 5-hour period; M10: most active 10-hour period; and RA: relative amplitude). Demographic variables included age, sex, race, education, marital status, and income. Linear mixed-effects models were used to test for demographic differences in rest-activity patterns. Adolescents, compared to younger children, had (1) later M10 midpoints (β = 1.12 hours [95% CI: 0.43, 1.18] and lower M10 activity levels; (2) later L5 midpoints (β = 1.6 hours [95% CI: 0.9, 2.3]) and lower L5 activity levels; (3) less regular rest-activity patterns (lower IS and higher IV); and 4) lower magnitudes (β = ?0.95 [95% CI: ?1.28, ?0.63]) and relative amplitudes (β = ?0.1 [95% CI: ?0.14, ?0.06]). Mid-to-older adults, compared to younger adults (aged 18–29 years), had (1) earlier M10 midpoints (β = ?1.0 hours [95% CI: ?1.6, ?0.4]; (2) earlier L5 midpoints (β = ?0.7 hours [95% CI: ?1.2, ?0.2]); and (3) more regular rest-activity patterns (higher IS and lower IV). The magnitudes and relative amplitudes were similar across the adult age categories. Sex, race and education level rest-activity differences were also observed. Rest-activity patterns vary across the lifespan, and differ by race, sex and education. Understanding population variation in these patterns provides a foundation for further elucidating the health implications of rest-activity patterns across the lifespan.  相似文献   

11.
Quality of life (QoL) is estimated from patients scores to items related to everyday life, including rest and activity. The rest-activity rhythm reflects endogenous circadian clock function. The relation between the individual rhythm in activity and QoL was investigated in 200 patients with metastatic colorectal cancer. Patients wore a wrist actigraph (Ambulatory Monitoring Inc., New York. NY) for 3-5 d before chronotherapy, and completed a QoL questionnaire developed by the European Organization for Research and Treatment of Cancer (QLQ-C30) plus the Hospital Anxiety and Depression Scale. The rest-activity circadian rhythm was characterized by the mean activity level (m), autocorrelation coefficient at 24h (r24), and the dichotomy index (I < O). a ratio between the amount of activity while in and out of bed. The distribution of the rest-activity cycle parameters and that of QoL scores was independent of sex, age, primary tumor, number of metastatic sites, and prior treatment. Both the 24h rhythm indicators were positively correlated with global QoL score as well as physical, emotional, and social functioning. Negative correlations were found between m, r24, or I < O and fatigue, appetite loss, and nausea. The rest-activity circadian rhythm appeared to be an objective indicator of physical welfare and QoL. This analysis suggests that circadian function may be one of the biological determinants of QoL in cancer patients.  相似文献   

12.
A major factor contributing to the evolution of mammals was their ability to be active during the night, a niche previously underused by terrestrial vertebrates. Diurnality subsequently reemerged multiple times in a variety of independent lineages. This paper reviews some recent data on circadian mechanisms in diurnal mammals and considers general themes that appear to be emerging from this work. Careful examination of behavioral studies suggests that although subtle differences may exist, the fundamental functions of the circadian system are the same, as seems to be the case with respect to the molecular mechanisms of the clock. This suggests that responses to signals originating in the clock must be different, either within the SCN or at its targets or downstream from them. Some features of the SCN vary from species to species, but none of these has been clearly associated with diurnality. The region immediately dorsal to the SCN, which receives substantial input from it, exhibits dramatically different rhythms in nocturnal lab rats and diurnal grass rats. This raises the possibility that it functions as a relay that transforms the signal emitted by the SCN and transmits different patterns to downstream targets in nocturnal and diurnal animals. Other direct targets of the SCN include neurons containing orexin and those containing gonadotropin-releasing hormone, and both of these populations of cells exhibit patterns of rhythmicity that are inverted in at least one diurnal compared to one nocturnal species. The patterns that emerge from the data on diurnality are discussed in terms of the implications they have for the evolution and neural substrates of a day-active way of life.  相似文献   

13.
Circadian rhythms are fundamental to life. In mammals, these rhythms are generated by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is remarkably consistent in structure and function between species, yet mammalian rest/activity patterns are extremely diverse, including diurnal, nocturnal, and crepuscular behaviors. Two mechanisms have been proposed to account for this diversity: (i) modulation of SCN output by downstream nuclei, and (ii) direct effects of light on activity. These two mechanisms are difficult to disentangle experimentally and their respective roles remain unknown. To address this, we developed a computational model to simulate the two mechanisms and their influence on temporal niche. In our model, SCN output is relayed via the subparaventricular zone (SPZ) to the dorsomedial hypothalamus (DMH), and thence to ventrolateral preoptic nuclei (VLPO) and lateral hypothalamus (LHA). Using this model, we generated rich phenotypes that closely resemble experimental data. Modulation of SCN output at the SPZ was found to generate a full spectrum of diurnal-to-nocturnal phenotypes. Intriguingly, we also uncovered a novel mechanism for crepuscular behavior: if DMH/VLPO and DMH/LHA projections act cooperatively, daily activity is unimodal, but if they act competitively, activity can become bimodal. In addition, we successfully reproduced diurnal/nocturnal switching in the rodent Octodon degu using coordinated inversions in both masking and circadian modulation. Finally, the model correctly predicted the SCN lesion phenotype in squirrel monkeys: loss of circadian rhythmicity and emergence of ∼4-h sleep/wake cycles. In capturing these diverse phenotypes, the model provides a powerful new framework for understanding rest/activity patterns and relating them to underlying physiology. Given the ubiquitous effects of temporal organization on all aspects of animal behavior and physiology, this study sheds light on the physiological changes required to orchestrate adaptation to various temporal niches.  相似文献   

14.
Endogenous circadian rhythmicity and sleep-wake homeostasis are robust regulators of human alertness and performance, yet few studies have examined how these regulatory processes affect motivation. Moreover, the influence of alertness and motivation on performance, independent of circadian phase and hours awake, has not been studied. Healthy subjects, 12 males and 3 females, ages 20 to 41, participated in a 2-week 28-h forced desynchrony protocol to address these issues. Subjects performed a battery of tests every 2 hours during scheduled wakefulness. Performance on a mathematical addition test and ratings of alertness and motivation on visual analog scales were analyzed. Performance scores were categorized as being associated with the highest or lowest alertness and motivation ratings for each circadian phase/hours awake bin to determine whether high levels of alertness and motivation resulted in higher performance scores above and beyond the effects of circadian and homeostatic regulation. Motivation varied significantly as a function of circadian phase and hours awake. Motivation and alertness were correlated. When circadian phase and hours awake were accounted for, performance was better when alertness and motivation ratings were highest and worse when those ratings were lowest. The present findings suggest that human performance is influenced by alertness and motivation independent of circadian phase and hours awake. Future studies examining the influence of circadian phase and sleep-wake homeostasis on human performance also should assess alertness and motivation to aid in the interpretation of performance data. Such studies also may aid in the development of countermeasures to improve human performance.  相似文献   

15.
The present study investigated whether pairing with a conspecific female would restore rhythmicity in the singing behaviour of arrhythmic male songbirds. We recorded the singing and, as the circadian response indicator, monitored the activity–rest pattern in male zebra finches (Taeniopygia guttata) housed without or with a conspecific female under 12 h light: 12 h darkness (12L:12D) or constant bright light (LLbright). Both unpaired and paired birds exhibited a significant daily rhythm in the singing and activity behaviour, but paired birds, under 12L:12D, showed a ~2 h extension in the evening. Exposure to LLbright decayed rhythmicity, but the female presence restored rhythmic patterns without affecting the 24 h song output. In the acoustic features, we found a significant difference in the motif duration between unpaired and paired male songs. Overall, these results demonstrated for the first time the role of the female in restoring the circadian phenotype of singing behaviour in male songbirds with disrupted circadian functions, although how interaction between sexes affects the circadian timing of male singing is not understood yet. It is suggested that social cues rendered by a conspecific female could improve the circadian performance by restoring rhythmicity in the biological functions of the cohabiting arrhythmic male partner.  相似文献   

16.
Daily patterns of behavior and physiology in animals in temperate zones often differ substantially between summer and winter. In mammals, this may be a direct consequence of seasonal changes of activity of the suprachiasmatic nucleus (SCN). The purpose of this study was to understand such variation on the basis of the interaction between pacemaker neurons. Computer simulation demonstrates that mutual electrical activation between pacemaker cells in the SCN, in combination with cellular electrical activation by light, is sufficient to explain a variety of circadian phenomena including seasonal changes. These phenomena are: self-excitation, that is, spontaneous development of circadian rhythmicity in the absence of a light-dark cycle; persistent rhythmicity in constant darkness, and loss of circadian rhythmicity in pacemaker output in constant light; entrainment to light-dark cycles; aftereffects of zeitgeber cycles with different periods; adjustment of the circadian patterns to day length; generation of realistic phase response curves to light pulses; and relative independence from day-to-day variation in light intensity. In the model, subsets of cells turn out to be active at specific times of day. This is of functional importance for the exploitation of the SCN to tune specific behavior to specific times of day. Thus, a network of on-off oscillators provides a simple and plausible construct that behaves as a clock with readout for time of day and simultaneously as a clock for all seasons.  相似文献   

17.
In spaceflight human circadian rhythms and sleep patterns are likely subject to change, which consequently disturbs human physiology, cognitive abilities and performance efficiency. However, the influence of microgravity on sleep and circadian clock as well as the underlying mechanisms remain largely unknown. Placing volunteers in a prone position, whereby their heads rest at an angle of −6° below horizontal, mimics the microgravity environment in orbital flight. Such positioning is termed head-down bed rest (HDBR). In this work, we analysed the influence of a 45-day HDBR on physiological diurnal rhythms. We examined urinary electrolyte and hormone excretion, and the results show a dramatic elevation of cortisol levels during HDBR and recovery. Increased diuresis, melatonin and testosterone were observed at certain periods during HDBR. In addition, we investigated the changes in urination and defecation frequencies and found that the rhythmicity of urinary frequency during lights-off during and after HDBR was higher than control. The grouped defecation frequency data exhibits rhythmicity before and during HDBR but not after HDBR. Together, these data demonstrate that HDBR can alter a number of physiological processes associated with diurnal rhythms.  相似文献   

18.
The aim of this work is to investigate the ultradian rhythms of the rest-activity cycle of albino rats during the light phase. Occurrence (time-of-day) of 11 behavioral items was registered in a portable computer (HP95-LX). Each animal was visually and continuously observed for a interval of 2 hr, 3 hr after lights-on. Spectral analysis showed rest-activity cycles with statistically significant periods of 1 hr and also in the range of 10 to 20 min. As these rats were synchronized by a light-dark cycle (LD 12:12, 350:1 lux), these results suggest that ultradian rhythms are components of the circadian rest-activity cycle. The ultradian temporal organization of rest and activity behavioral items obtained by visual inspection is similar to the cycle of REM-NREM sleep stages obtained by EEG and described earlier in albino rats.  相似文献   

19.
The aim of this work is to investigate the ultradian rhythms of the rest-activity cycle of albino rats during the light phase. Occurrence (time-of-day) of 11 behavioral items was registered in a portable computer (HP95-LX). Each animal was visually and continuously observed for a interval of 2 hr, 3 hr after lights-on. Spectral analysis showed rest-activity cycles with statistically significant periods of 1 hr and also in the range of 10 to 20 min. As these rats were synchronized by a light-dark cycle (LD 12:12, 350:1 lux), these results suggest that ultradian rhythms are components of the circadian rest-activity cycle. The ultradian temporal organization of rest and activity behavioral items obtained by visual inspection is similar to the cycle of REM-NREM sleep stages obtained by EEG and described earlier in albino rats.  相似文献   

20.
The Neurospora circadian clock: simple or complex?   总被引:2,自引:0,他引:2  
The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a model system for clock studies; the frequency (frq), white collar-1 and white collar-2 genes and their roles in rhythmicity; the phenomenon of rhythmicity in null frq mutants and its implications for clock mechanisms; the study of output pathways using clock-controlled genes; other rhythms in fungi; mathematical modelling of the Neurospora circadian system; and the application of new technologies to the study of Neurospora rhythmicity. We conclude that there may be many gene products involved in the clock mechanism, there may be multiple interacting oscillators comprising the clock mechanism, there may be feedback from output pathways onto the oscillator(s) and from the oscillator(s) onto input pathways, and there may be several independent clocks coexisting in one organism. Thus even a relatively simple lower eukaryote can be used to address questions about a complex, networked circadian system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号