首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BackgroundIron is an essential element for growth and metabolic activities of all living organisms but remains in its oxyhydroxide ferric ion form in the surrounding. Unavailability of iron in soluble ferrous form led to development of specific pathways and machinery in different organisms to make it available for use and maintain its homeostasis. Iron homeostasis is essential as under different circumstances iron in excess as well as deprivation leads to different pathological conditions in human.ObjectiveThis review highlights the current findings related to iron excess as well as deprivation with regards to cellular proliferation.ConclusionsIron excess is extensively associated with different types of cancers viz. colorectal cancer, breast cancer etc. by producing an oxidative stressed condition and alteration of immune system. Ironically its deprivation also results in anaemic conditions and leads to cell cycle arrest at different phases with mechanism yet to be explored. Iron deprivation arrests cell cycle at G1/S and in some cases at G2/M checkpoints resulting in growth arrest. However, in some cases iron overload arrests cell cycle at G1 phase by blocking certain signalling pathways. Certain natural and synthetic iron chelators are being explored from few decades to combat diseases caused by alteration in iron homeostasis.  相似文献   

2.
The aims of this study were to determine the effect of breast milk zinc, copper, and iron concentrations on infants’ growth and their possible correlations with maternal dietary intake. Milk samples and information on food intake were collected from 182 lactating women. Concentrations of zinc, copper, and iron in milk were analyzed using atomic absorption spectrophotometry. The infant’s weight for age Z-score (WAZ) and height for age Z-score (HAZ) were calculated. The mean milk zinc, copper, and iron concentrations were 1.85?±?0.5, 0.53?±?0.3, and 0.85?±?0.2 mg/l, respectively. Only zinc mean level was lower than the recommended range. Association between zinc, copper, and iron concentrations of milk and WAZ or HAZ of infants were not significant. However, the WAZ of infants whose mothers' milk zinc was more than 2 mg/l was significantly (P?<?0.039) higher than for others. The mean dietary zinc (5.31?±?2.3 mg/day) and copper (1.16?±?0.7 mg/day) intake of mothers was significantly less than the required daily intake (RDA) recommendations (P?<?0.05). The mean dietary iron intake (11.8?±?8.2 mg/day) was significantly higher than RDA recommendation (P?<?0.001). No significant association was found between maternal mean dietary zinc, copper, and iron intakes with their concentrations in milk. Dietary consultation or/and zinc supplementation is suggested for lactating women and infants.  相似文献   

3.
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production.More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.  相似文献   

4.
Iron overload is common in elderly people which is implicated in the disease progression of osteoarthritis (OA), however, how iron homeostasis is regulated during the onset and progression of OA and how it contributes to the pathological transition of articular chondrocytes remain unknown. In the present study, we developed an in vitro approach to investigate the roles of iron homeostasis and iron overload mediated oxidative stress in chondrocytes under an inflammatory environment. We found that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis via upregulating iron influx transporter TfR1 and downregulating iron efflux transporter FPN, thus leading to chondrocytes iron overload. Iron overload would promote the expression of chondrocytes catabolic markers, MMP3 and MMP13 expression. In addition, we found that oxidative stress and mitochondrial dysfunction played important roles in iron overload-induced cartilage degeneration, reducing iron concentration using iron chelator or antioxidant drugs could inhibit iron overload-induced OA-related catabolic markers and mitochondrial dysfunction. Our results suggest that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis and promote iron influx, iron overload-induced oxidative stress and mitochondrial dysfunction play important roles in iron overload-induced cartilage degeneration.  相似文献   

5.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

6.
Iron overload disorders represent a heterogenous group of conditions resulting from inherited and acquired causes. If undiagnosed they can be progressive and fatal. Early detection and phlebotomy prior to the onset of cirrhosis can reduce morbidity and normalise life expectancy. We now have greater insight into the complex mechanisms of normal and disordered iron homeostasis following the discovery of new proteins and genetic defects. Here we review the normal mechanisms and regulation of gastrointestinal iron absorption and liver iron transport and their dysregulation in iron overload states. Advances in the understanding of the natural history of iron overload disorders and new methods for clinical detection and management of hereditary haemochromatosis are also reviewed. The current screening strategies target high-risk groups such as first-degree relatives of affected individuals and those with clinical features suggestive of iron loading. Potential ethical, legal and psychosocial issues arising through application of genetic screening programs need to be resolved prior to implementation of general population screening programs.  相似文献   

7.
Iron is a key micronutrient for the human body and participates in biological processes, such as oxygen transport, storage, and utilization. Iron homeostasis plays a crucial role in the function of the heart and both iron deficiency and iron overload are harmful to the heart, which is partly mediated by increased oxidative stress. Iron enters the cardiomyocyte through the classic pathway, by binding to the transferrin 1 receptor (TfR1), but also through other routes: T-type calcium channel (TTCC), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), Zrt-, Irt-like Proteins (ZIP) 8 and 14. Only one protein, ferroportin (FPN), extrudes iron from cardiomyocytes. Intracellular iron is utilized, stored bound to cytoplasmic ferritin or imported by mitochondria. This cardiomyocyte iron homeostasis is controlled by iron regulatory proteins (IRP). When the cellular iron level is low, expression of IRPs increases and they reduce expression of FPN, inhibiting iron efflux, reduce ferritin expression, inhibiting iron storage and augment expression of TfR1, increasing cellular iron availability. Such cellular iron homeostasis explains why the heart is very susceptible to iron overload: while cardiomyocytes possess redundant iron importing mechanisms, they are equipped with only one iron exporting protein, ferroportin. Furthermore, abnormalities of iron homeostasis have been found in heart failure and coronary artery disease, however, no clear picture is emerging yet in this area. If we better understand iron homeostasis in the cardiomyocyte, we may be able to develop better therapies for a variety of heart diseases to which abnormalities of iron homeostasis may contribute.  相似文献   

8.
Iron homeostasis is crucial to many biological functions in nearly all organisms, with roles ranging from oxygen transport to immune function. Disruption of iron homeostasis may result in iron overload or iron deficiency. Iron deficiency may have severe consequences, including anemia or changes in immune or neurotransmitter systems. Here we report on the variability of phenotypic iron tissue loss and splenomegaly and the associated quantitative trait loci (QTLs), polymorphic areas in the mouse genome that may contain one or more genes that play a role in spleen iron concentration or spleen weight under each dietary treatment. Mice from 26 BXD/Ty recombinant inbred strains, including the parent C57BL/6 and DBA/2 strains, were randomly assigned to adequate iron or iron-deficient diets at weaning. After 120?days, splenomegaly was measured by spleen weight, and spleen iron was assessed using a modified spectrophotometry technique. QTL analyses and gene expression comparisons were then conducted using the WebQTL GeneNetwork. We observed wide, genetic-based variability in splenomegaly and spleen iron loss in BXD/Ty recombinant inbred strains fed an iron-deficient diet. Moreover, we identified several suggestive QTLs. Matching our QTLs with gene expression data from the spleen revealed candidate genes. Our work shows that individual differences in splenomegaly response to iron deficiency are influenced at least partly by genetic constitution. We propose mechanistic hypotheses by which splenomegaly may result from iron deficiency.  相似文献   

9.
Iron overload and iron toxicity, whether because of increased absorption or iron loading from repeated transfusions, can be major causes of morbidity and mortality in a number of chronic anemias. Significant advances have been made in our understanding of iron homeostasis over the past decade. At the same time, advances in magnetic resonance imaging have allowed clinicians to monitor and quantify iron concentrations noninvasively in specific organs. Furthermore, effective iron chelators are now available, including preparations that can be taken orally. This has resulted in substantial improvement in mortality and morbidity for patients with severe chronic iron overload. This paper reviews the key points of iron homeostasis and attempts to place clinical observations in patients with transfusional iron overload in context with the current understanding of iron homeostasis in humans.  相似文献   

10.
Iron storage disease attributable to dietary iron overload was identified in four genera and seven species of tanagers. Dietary analysis showed iron levels seven-to 12-fold above recommended values. The source of the iron was commercial mynah bird diet, a common component of passerine diets, which suggests an alternative interpretation of iron syndromes previously described as idiopathic heritable conditions. Pathologically, the syndrome was characterized by marked iron deposition in hepatocytes, Kupffer cells, and reticuloendothelial cells of the spleen and other tissues. Pathologic, demographic, and clinical data were compatible with a dietary source of iron overload.  相似文献   

11.
Iron disorders of genetic origin are mainly composed of iron overload diseases, the most frequent being HFE-related hemochromatosis. Hepcidin deficiency underlies iron overload in HFE-hemochromatosis as well as in several other genetic iron excess disorders, such as hemojuvelin or hepcidin-related hemochromatosis and transferrin receptor 2-related hemochromatosis. Deficiency of ferroportin, the only known cellular protein iron exporter, produces iron overload in the typical form of ferroportin disease. By contrast, genetically enhanced hepcidin production, as observed in matriptase-2 deficiency, generates iron-refractory iron deficiency anemia. Diagnosis of these iron storage disorders is usually established noninvasively through combined biochemical, imaging and genetic approaches. Moreover, improved knowledge of the molecular mechanisms accounting for the variations of iron stores opens the way of novel therapeutic approaches aiming to restore normal iron homeostasis. In this review, we will summarize recent findings about these various genetic entities that have been identified owing to an exemplary interplay between clinicians and basic scientists.  相似文献   

12.
梁惠惠  冯雪  高海春 《微生物学通报》2020,47(10):3305-3317
铁元素通常以蛋白辅因子的形式参与一系列重要的生命过程,是绝大多数生命必需的营养物质。在细菌生命过程中,一方面铁短缺是必须克服的严峻挑战,另一方面铁过量又会危及生命。铁的这种二元性质要求细菌必须严格保持体内的铁稳态。当前革兰氏阴性菌铁稳态的作用模式及理解主要基于肠道细菌大肠杆菌的长期探索成果。近年来,在环境细菌中开展的相关研究揭示了革兰氏阴性菌的铁稳态机制存在出乎意料的多样性:细菌中铁稳态相关的生物途径及组成蛋白、关键调控系统的生理影响以及铁稳态与其他生物过程的相互影响等方面都显示不同菌种的生存和进化特征。本综述以希瓦氏菌中的相关发现为基础,分析总结革兰氏阴性菌铁稳态重要途径及其组成的多样性、不同途径的相互影响以及调控因子的生理影响和调控机理等方面的研究进展和未解决的问题,以期为革兰氏阴性菌铁稳态的研究提供参考。  相似文献   

13.

This review discusses the development of studies that evaluated the essentiality and requirements of iron from the ancient to the present. The therapeutic effects of iron compounds were recognized by the ancient Greeks and Romans. The earliest recognition of the essentiality of iron was stated by Paracelsus, a distinguished physician alchemist, in the sixteenth century. Iron was included in the earliest nutritional standard prepared for the Royal Army by E. A. Parkes, the first professor of hygiene. The League of Nations Health Organisation determined average iron requirements based on literature review. In the first US Recommended Dietary Allowances (RDA), the RDA of iron was determined from the results of iron balance studies. In the current Dietary Reference Intakes, iron requirements were determined based on the factorial method with the aid of Monte Carlo simulation for combining basal and menstrual iron losses. Population data analysis is a recently developed alternative that does not use the pre-estimated iron absorption rate and requires the prevalence of inadequacy instead. Population data analysis uses the convolution integral for combining basal and menstrual iron losses to ensure the required accuracy. This review also provides new estimates of hair and nail iron losses.

  相似文献   

14.
Dietary copper in the U.S. often is lower than that proved insufficient for men and women under controlled conditions. Iron overload can have adverse effects on copper nutriture and can produce cardiac disease in people. The hypothesis that iron can interfere with copper utilization to produce adverse effects related to cardiovascular function was tested.

Rats were fed a diet high in iron and marginal, but not deficient in copper for comparison with similar diets containing iron at the recommended amount. Copper and iron were measured by atomic absorption spectroscopy; cholesterol was measured by fluorescence, ceruloplasmin was measured by oxidase activity and hematology was done by an automated cell counter. When dietary copper was 2.0 mg/kg of diet, high iron decreased (p<0.008) cardiac and hepatic copper, plasma copper and ceruloplasmin, and increased (p<0.02) cardiac weight, hepatic iron and plasma cholesterol. When dietary copper was increased to 2.5 mg/kg, copper in heart and plasma decreased (p<0.04) and hepatic iron increased (p=0.001) with high iron but other effects disappeared. No harmful changes in hematology, such as hematocrit, mean corpuscular volume, etc. were found. High iron increased the dietary copper requirement of the animals. People with iron overload may benefit from copper supplementation, particularly if they habitually consume a diet low in copper.  相似文献   


15.
Iron overload has been associated with damage of the liver and other organs of patients with primary or secondary increased iron load. In order to study the effect of iron overload on the pathophysiology of kidney lysosomes, experimentally induced iron overload models were employed. Iron overload was achieved through intraperitoneal injections of Fe-dextran (Imferon) in male rats, at different final iron concentrations (825 and 1650 mg/kg, single and double dose groups respectively). Controls were injected with dextran following a similar protocol. The animals were killed at different time points after the last injection. Subcellular fractionation studies of kidney homogenates were carried out by differential centrifugation and density gradient centrifugation. The kidney iron load was increased with both doses. Iron appeared to accumulate mainly in the lysosomes, bringing about distinct changes in the behaviour of the organelles as judged by subcellular fractionation studies. Lysosomes became more fragile and showed increased density. The extent of the above changes seemed to correlate with the extent and duration of iron accumulation and could be reversed when the iron load was reduced.  相似文献   

16.
The aim of this paper is to evaluate dietary habits and behavioural factors related to atherosclerosis in Slovak Romany, the large minority, characterized by high cardiovascular morbidity. The study involved 150 Romany volunteers (68 males, mean age 42.1 +/- 13.9 y and 82 females, mean age 40.9 +/- 13.7 y). Dietary data were obtained by a validated food-requency questionnaire and a single 24-hour dietary recall. The nutrient intake and health behaviour of the Romany population is not consistent with current guidelines for atherosclerosis prevention. The mean intake of fat is higher than the recommended dietary allowance (RDA), especially in males (155.3 % of RDA). In females the intake of alpha-linolenic acid is low, in males the cholesterol content of the food exceeds the acceptable value. The mean intake of protein is higher than the recommendation (males 153% of RDA, females 122.2%), with a high proportion of animal protein. In both sexes the mean intake of vitamins is below the RDA. In comparison to the general population the diet of the Romany males contains significantly more animal protein (p < 0.05), less plant protein (p < 0.05) and folate (p < 0.01). In the diet of the Romany females a significantly lower intake of plant protein (p < 0.05) and vitamin E (p < 0.05) was observed, as well as a lower intake of linoleic acid and iron in both sexes. The cumulation of ten selected cardiovascular risk factors showed that particularly the Romany males could be considered as having more atherogenic profile.  相似文献   

17.
Summary

Iron overload is known to occur in West European and American populations due to the consumption of an iron-rich diet. There are also genetic disorders which lead to body iron overload. It has been shown that iron overload predisposes humans to an increased risk of cancer. In experimental animals, iron overload is known to enhance intestinal, colon, hepatic, pulmonary and mammary carcinogenesis. However, the mechanism by which iron overload enhances chemically-induced carcinogenesis is not known. In this study, we show that iron overload acts as a mild tumor promoter in mouse skin. Female albino swiss mice were given 1 mg iron/mouse parenterally for 2 weeks to induce iron overload. These animals showed a three-fold increase in cutaneous iron concentration as compared to normal mice. Tumors were initiated by topically applying 7,12-dimethylbenz(a)anthracene (DMBA). Appearance of the first tumor (latency period), percent tumor incidence and number of tumors/mouse were recorded. When compared to the control group, iron overload mice showed an increased incidence of tumors, from 25%-55% by week 20, and tumors appeared 4 weeks earlier. The number of tumors per mouse was four-fold higher in the iron overload group. The induction of cutaneous ornithine decarboxylase (ODC) activity and [3H]thymidine incorporation in cutaneous DNA were higher in iron overload groups as compared to normal control animals. Similar to other oxidant tumor promoters, iron overload enhanced cutaneous lipid peroxidation and xanthine oxidase activity and decreased catalase activity. Our results indicate that iron overload exerts a mild tumor promoting activity in mouse skin. Our data also show that oxidative stress generated by iron overload plays an important role in the augmentation of cutaneous tumorigenesis. These data may also have implications for the enhanced risk of cancer-induction following UVB exposure of human populations with iron overload.  相似文献   

18.
Iron in blood cells has several physiological functions like transporting oxygen to cells and maintaining iron homeostasis. Iron is primarily contained in red blood cells (RBCs), but monocytes also store iron as these cells are responsible for the recycling of senescent RBCs. Iron also serves an important role related to the function of different leukocytes. In inflammation, iron homeostasis is dependent on cytokines derived from T cells and macrophages. Fluctuations of iron content in the body lead to different diseases. Iron deficiency, which is also known as anemia, hampers different physiological processes in the human body. On the other hand, genetic or acquired hemochromatosis ultimately results in iron overload and leads to the failure of different vital organs. Different diagnoses and treatments are developed for these kinds of disorders, but the majority are costly and suffer from side effects. To address this issue, magnetophoresis could be an attractive technology for the diagnosis (and in some cases treatment) of these pathologies due to the paramagnetic character of the cells containing iron. In this review, we discuss the main functions of iron in blood cells and iron-related diseases in humans and highlight the potential of magnetophoresis for diagnosing and treating some of these disorders.  相似文献   

19.
铁是大多数生物必需的微量元素,在健康和疾病,尤其是宿主-病原菌互作过程中发挥着至关重要的作用.细菌胞内铁离子浓度的高低不仅是调节自身高亲和力铁运输系统表达的信号,更是病原菌产生毒素和其他必要毒力因子的关键调控因素.而另一方面,超负荷的铁也会导致致命的细胞毒性.因此,生物体内铁稳态的维持受到严格控制,其中以铁摄取调节蛋白(ferric uptake regulator,Fur)的作用最为显著,其调控网络涵盖了细菌生命活动的各个方面.本综述将基于Fur的生物学功能,围绕其家族分类、结构特点和差异、调控网络和调控机制等方面进行总结和分析,以期为Fur和铁稳态调节等研究提供参考.  相似文献   

20.
Iron overload cardiomyopathy results from iron accumulation in the myocardium that is closely linked to iron-mediated myocardial fibrosis. Salvia miltiorrhiza (SM, also known as Danshen), a traditional Chinese medicinal herb, has been widely used for hundreds of years to treat cardiovascular diseases. Here, we investigated the effect and potential mechanism of SM on myocardial fibrosis induced by chronic iron overload (CIO) in mice. Kunming male mice (8 weeks old) were randomized to six groups of 10 animals each: control (CONT), CIO, low-dose SM (L-SM), high-dose SM (H-SM), verapamil (VRP) and deferoxamine (DFO) groups. Normal saline was injected in the CONT group. Mice in the other five groups were treated with iron dextran at 50 mg/kg per day intraperitoneally for 7 weeks, and those in the latter four groups also received corresponding daily treatments, including 3 g/kg or 6 g/kg of SM, 100 mg/kg of VRP, or 100 mg/kg of DFO. The iron deposition was estimated histologically using Prussian blue staining. Myocardial fibrosis was determined by Masson’s trichrome staining and hydroxyproline (Hyp) quantitative assay. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and protein expression levels of type I collagen (COL I), type I collagen (COL III), transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase-9 (MMP-9) were analyzed to investigate the mechanisms underlying the effects of SM against iron-overloaded fibrosis. Treatment of chronic iron-overloaded mice with SM dose-dependently reduced iron deposition levels, fibrotic area percentage, Hyp content, expression levels of COL I and COL III, as well as upregulated the expression of TGF- β1 and MMP-9 proteins in the heart. Moreover, SM treatment decreased MDA content and increased SOD activity. In conclusion, SM exerted activities against cardiac fibrosis induced by CIO, which may be attributed to its inhibition of iron deposition, as well as collagen metabolism and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号