首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural regulatory networks contain many interacting components that allow for fine-tuning of switching and memory properties. Building simple bistable switches, synthetic biologists have learned the design principles of complex natural regulatory networks. However, most switches constructed so far are so simple (e.g. comprising two regulators) that they are functional only within a limited parameter range. Here, we report the construction of robust, tunable bistable switches in Escherichia coli using three heterologous protein regulators (ExsADC) that are sequestered into an inactive complex through a partner swapping mechanism. On the basis of mathematical modeling, we accurately predict and experimentally verify that the hysteretic region can be fine-tuned by controlling the interactions of the ExsADC regulatory cascade using the third member ExsC as a tuning knob. Additionally, we confirm that a dual-positive feedback switch can markedly increase the hysteretic region, compared to its single-positive feedback counterpart. The dual-positive feedback switch displays bistability over a 106-fold range of inducer concentrations, to our knowledge, the largest range reported so far. This work demonstrates the successful interlocking of sequestration-based ultrasensitivity and positive feedback, a design principle that can be applied to the construction of robust, tunable, and predictable genetic programs to achieve increasingly sophisticated biological behaviors.  相似文献   

2.
Kim JR  Cho KH 《The FEBS journal》2012,279(18):3329-3337
Hysteresis can be found in many physical systems, and a hysteretic switch has been used for various mechanical and electrical systems. Such a hysteretic switch can be created by using a single positive feedback loop, as often used in engineering systems. It is, however, intriguing that various cellular signaling systems use coupled positive feedback loops to implement the hysteretic switch. A question then arises about the advantage of using coupled positive feedback loops instead of simple isolated positive feedback for an apparently equivalent hysteretic switch. Through mathematical simulations, we determined that cellular systems with coupled positive feedback loops show enhanced hysteretic switching, and can thereby make a more reliable decision under conditions of noisy signaling. As most intracellular processes are accompanied by intrinsic noise, important cellular decisions such as differentiation and apoptosis need to be highly robust to such noises. The coupled positive feedback loops might have been evolutionarily acquired to enable correct cell fate decisions to be made through enhanced hysteretic switching in noisy cellular environments.  相似文献   

3.
Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested.  相似文献   

4.
5.
M Yamauchi  T A Baker 《The EMBO journal》1998,17(18):5509-5518
MuB protein, an ATP-dependent DNA-binding protein, collaborates with Mu transposase to promote efficient transposition. MuB binds target DNA, delivers this target DNA segment to transposase and activates transposase''s catalytic functions. Using ATP-bound, ADP-bound and ATPase-defective MuB proteins we investigated how nucleotide binding and hydrolysis control the activities of MuB protein, important for transposition. We found that both MuB-ADP and MuB-ATP stimulate transposase, whereas only MuB-ATP binds with high affinity to DNA. Four different ATPase-defective MuB mutants fail to activate the normal transposition pathway, further indicating that ATP plays critical regulatory roles during transposition. These mutant proteins fall into two classes: class I mutants are defective in target DNA binding, whereas class II mutants bind target DNA, deliver it to transposase, but fail to promote recombination with this DNA. Based on these studies, we propose that the switch from the ATP- to ADP-bound form allows MuB to release the target DNA while maintaining its stimulatory interaction with transposase. Thus, ATP-hydrolysis by MuB appears to function as a molecular switch controlling how target DNA is delivered to the core transposition machinery.  相似文献   

6.
Regulatory networks controlling bacterial gene expression often evolve from common origins and share homologous proteins and similar network motifs. However, when functioning in different physiological contexts, these motifs may be re-arranged with different topologies that significantly affect network performance. Here we analyze two related signaling networks in the bacterium Bacillus subtilis in order to assess the consequences of their different topologies, with the aim of formulating design principles applicable to other systems. These two networks control the activities of the general stress response factor sigma(B) and the first sporulation-specific factor sigma(F). Both networks have at their core a "partner-switching" mechanism, in which an anti-sigma factor forms alternate complexes either with the sigma factor, holding it inactive, or with an anti-anti-sigma factor, thereby freeing sigma. However, clear differences in network structure are apparent: the anti-sigma factor for sigma(F) forms a long-lived, "dead-end" complex with its anti-anti-sigma factor and ADP, whereas the genes encoding sigma(B) and its network partners lie in a sigma(B)-controlled operon, resulting in positive and negative feedback loops. We constructed mathematical models of both networks and examined which features were critical for the performance of each design. The sigma(F) model predicts that the self-enhancing formation of the dead-end complex transforms the network into a largely irreversible hysteretic switch; the simulations reported here also demonstrate that hysteresis and slow turn off kinetics are the only two system properties associated with this complex formation. By contrast, the sigma(B) model predicts that the positive and negative feedback loops produce graded, reversible behavior with high regulatory capacity and fast response time. Our models demonstrate how alterations in network design result in different system properties that correlate with regulatory demands. These design principles agree with the known or suspected roles of similar networks in diverse bacteria.  相似文献   

7.
Several genetic mutants of Schizosaccharomyces pombe that form multiple septa and pseudohyphae (i.e. branching growth) have been isolated.1-15 The current understanding of these mutants is that they lack the ability to separate the two sister cells after formation of the septum. Here it is shown that switching to multisepta and pseudohyphal growth can be induced in a reversible manner in wild-type S. pombe cells by changing the growth conditions, thus indicating an inherent cellular switch. Flow cytometry profiles of exponentially growing cultures of both wild-type and mutant cells further support that a bi-stable switch is controlling the morphological state of the cell in a stress-dependent manner.  相似文献   

8.
Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested.  相似文献   

9.
10.
Growth of fission yeast at the ends of its cylindrical cells switches from a monopolar to a bipolar mode, before it ceases during mitosis and cell division. Here we assume that these growth modes correspond to three stable states of an underlying regulatory circuit, which is a relatively simple and to a large degree autonomous subsystem of an otherwise complex cellular control system. We develop a switch-like logical circuit based on three elements defined as binary variables. Effects of circuit variables on each other are expressed in terms of logical operations. We analyse this circuit for its behavior ("phenotypes") after removing single or multiple operations ("mutants"). Known fission yeast polarity mutants such as those defective in the switch to bipolar growth can be classified based on these predicted 'phenotypes'. Differences in growth patterns between daughter cells in different bipolar growth mutants are also predicted by the circuit model. The model presented here should provide a useful framework to guide future experiments into mechanisms of cellular polarity. This paper illustrates the usefulness of simple logical circuits to describe and dissect features of complex regulatory processes such as the fission yeast growth patterns in both wild type and mutant cells.  相似文献   

11.
Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become “directed walkers” is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.  相似文献   

12.
Trilobites offer the opportunity to explore postembryonic development within the fossil record of arthropod evolution. In contrast to most trilobites, the Silurian proetid Aulacopleura konincki from the Czech Republic exhibits marked variation in the mature number of thoracic segments, with five morphs with 18-22 thoracic segments. The combination of abundant articulated specimens available from a narrow stratigraphic interval and segmental intraspecific variation makes this trilobite singularly useful for studying postembryonic growth and segmentation. Trunk segmentation followed a hemianamorphic pattern, as seen in other arthropods and as characteristic of the Trilobita; during a first anamorphic phase, segments were accreted, while in the subsequent epimorphic phase, segmentation did not proceed further despite continued growth. Size increment during the anamorphic phase was targeted and followed Dyar's rule, a geometric progression typical of many arthropods. We consider alternative hypotheses for the control of the switch from anamorphic to epimorphic phases of development. Our analysis favors a scenario in which the mature number of thoracic segments was determined quite early in development rather than at a late stage in association with a critical size threshold. This study demonstrates that hypotheses concerning developmental pattern and control can be tested in organisms belonging to an extinct clade.  相似文献   

13.
14.
A critical goal in cell biology is to develop a systems-level perspective of eukaryotic cell cycle controls. Among these controls, a complex signaling network (called ‘checkpoints’) arrests progression through the cell cycle when there is a threat to genomic integrity such as unreplicated or damaged DNA. Understanding the regulatory principles of cell cycle checkpoints is important because loss of checkpoint regulation may be a requisite step on the roadway to cancer. Mathematical modeling has proved to be a useful guide to cell cycle regulation by revealing the importance of bistability, hysteresis and time lags in governing cell cycle transitions and checkpoint mechanisms. In this report, we propose a mathematical model of the frog egg cell cycle including effects of unreplicated DNA on progression into mitosis. By a stepwise approach utilizing parameter estimation tools, we build a model that is grounded in fundamental behaviors of the cell cycle engine (hysteresis and time lags), includes new elements in the signaling network (Myt1 and Chk1 kinases), and fits a large and diverse body of data from the experimental literature. The model provides a validated framework upon which to build additional aspects of the cell cycle checkpoint signaling network, including those control signals in the mammalian cell cycle that are commonly mutated in cancer.  相似文献   

15.
The 26S proteasome is an ATP-dependent eukaryotic protease responsible for degrading many important cell regulators, especially those conjugated with multiple ubiquitins. Bound on both ends of the 20S core protease is a multisubunit regulatory particle that plays a crucial role in substrate selection by an as yet unknown mechanism(s). Here, we show that the RPN12 subunit of the Arabidopsis regulatory particle is involved in cytokinin responses. A T-DNA insertion mutant that affects RPN12a has a decreased rate of leaf formation, reduced root elongation, delayed skotomorphogenesis, and altered growth responses to exogenous cytokinins, suggesting that the mutant has decreased sensitivity to the hormone. The cytokinin-inducible genes CYCD3 and NIA1 are upregulated constitutively in rpn12a-1, indicating that feedback-inhibitory mechanisms also may be altered. rpn12a-1 seedlings also showed changes in auxin-induced growth responses, further illustrating the close interaction between auxin and cytokinin regulation. In yeast, RPN12 is necessary for the G1/S and G2/M transitions of the cell cycle, phases that have been shown to be under cytokinin control in plants. We propose that RPN12a is part of the Arabidopsis 26S proteasome that controls the stability of one or more of the factors involved in cytokinin regulation.  相似文献   

16.
Voigt CA  Wolf DM  Arkin AP 《Genetics》2005,169(3):1187-1202
The strategy of combining genes from a regulatory protein and its antagonist within the same operon, but controlling their activities differentially, can lead to diverse regulatory functions. This protein-antagonist motif is ubiquitous and present in evolutionarily unrelated regulatory pathways. Using the sin operon from the Bacillus subtilis sporulation pathway as a model system, we built a theoretical model, parameterized it using data from the literature, and used bifurcation analyses to determine the circuit functions it could encode. The model demonstrated that this motif can generate a bistable switch with tunable control over the switching threshold and the degree of population heterogeneity. Further, the model predicted that a small perturbation of a single critical parameter can bias this architecture into functioning like a graded response, a bistable switch, an oscillator, or a pulse generator. By mapping the parameters of the model to specific DNA regions and comparing the genomic sequences of Bacillus species, we showed that phylogenetic variation tends to occur in those regions that tune the switch threshold without disturbing the circuit function. The dynamical plasticity of the protein-antagonist operon motif suggests that it is an evolutionarily convergent design selected not only for particular immediate function but also for its evolvability.  相似文献   

17.
In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1) fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1) notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of the pathophysiological tissue growth mode.  相似文献   

18.
19.
20.
Critical transitions whereby small changes in conditions can cause large and irreversible changes in ecosystem states are a cause of increasing concern in ecology. Here, we focus on the irreversibility of these transitions, formally known as hysteresis. We explore how simple correlations between parameters in Lotka-Volterra predator-prey equations result in a variety of complicated hysteretic patterns. These patterns include “unattainable” stable states that once lost may never be recovered. We suspect these patterns to be common in natural systems, where interactions between diverse assemblages are unavoidable. Thus, understanding underlying hysteretic structures may be necessary for rescuing lost ecosystem states and avoiding future losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号